Week 3 HW, Stoc. Proc 25-26

Srikanth Pai, MSE

August 3, 2025

1. Consider a DTMC with state space $\{1, 2, 3\}$ and transition matrix:

$$P = \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.4 & 0.5 \end{pmatrix}$$

- (a) If $P_0 = (0.4, 0.4, 0.2)$ is the initial distribution on the states (1, 2, 3), compute $P(X_0 = 1, X_1 = 2, X_2 = 3)$.
- (b) Find the two-step transition matrix P^2 .
- (c) Compute $\mathbb{E}(X_3|X_0)$. Recall that this conditional expectation is a function of X_0 .
- 2. For the chain in problem 1, determine which of the following are stopping times with proof:
 - (a) $T_1 = \min\{n \ge 0 : X_n = 3\}.$
 - (b) $T_2 = \min\{n \ge 0 : X_{n+1} = 1\}.$
 - (c) $T_3 = \min\{n \ge 0 : X_n = 1 \text{ and } X_{n-1} = 3\}$ (with $T_3 = \infty$ if n = 0).
- 3. For the random time $S = \max\{n \leq 2 : X_n = 2\}$:
 - (a) PROVE S is not a stopping time.
 - (b) Starting from $X_0 = 2$, calculate:
 - $P(X_{S+1} = 3 | X_S = 2, S = 0)$
 - $P(X_{S+1} = 3 | X_S = 2, S = 2)$
 - $P(X_{S+1} = 3 | X_S = 2)$

Show these are different.

4. Consider the chain with transition matrix:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.3 & 0.4 & 0.3 & 0 \\ 0 & 0.2 & 0.5 & 0.3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (a) Which states are transient/recurrent?
- (b) Let $T_{24} = \min\{n \ge 1 : X_n = 4 | X_0 = 2\}$. Calculate $f_{24}^{(1)}$, $f_{24}^{(2)}$, $f_{24}^{(3)}$ and f_{24} .

1

(c) Find the mean return time $\nu_{22} = E[T_{22}]$.

- 5. Show that if S,T are stopping times, then show that minS,T, maxS,T, S+T are all stopping times. Show an example where S-T is not a stopping time.
- 6. Let $\{X_n : n \ge 1\}$ is an independent and identically distributed (i.i.d.) sequence $\mathbb{E}(|X|) < \infty$. We are interested in the sum of the r.v.s. up to time n,

$$S_n = X_1 + \cdots + X_n$$
.

If T is a stopping time with $\mathbb{E}(T) < \infty$, **prove** that

$$\mathbb{E}(S_T) = \mathbb{E}(X)\mathbb{E}(T).$$

Let $\{S_n|n\geq 0\}$ be a symmetric random walk starting at 0. Let $N=\inf\{n\in\mathbb{N}:S_n\in(-a,b)\}$ where a,b>0 are fixed integers. Compute $\Pr\{S_N=b\}$. [Hint: Show $\mathbb{E}(S_N)=0$ and then compute the expectation using definition.]