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A Classic Problem: Growth with Uncertainty

• Each period, the economy produces output using last period’s

capital and today’s productivity.

• Productivity can be high or low and changes over time in a random

but persistent way.

• A planner chooses how much of today’s output to consume and

how much to save as new capital for tomorrow.

• The tradeoff: enjoy consumption now vs. invest to raise uncertain

future production.

• Goal: choose consumption/saving each period to maximize society’s

discounted well-being over time.
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Formal Setup (Brock–Mirman, 1972)

• State variables: capital Kt , productivity zt .

• Production: Yt = zt f (Kt).

• Resource constraint: Yt = Ct + Kt+1 (no depreciation for

simplicity; include δ if needed).

• Shock dynamics: zt+1 ∼ P(· | zt) (finite-state Markov or AR(1)

in logs).

• Objective:

max
{Ct}t≥0

E

[ ∞∑
t=0

βt u(Ct)

]
, 0 < β < 1.

• Control: choose Ct (equivalently choose Kt+1 = zt f (Kt)− Ct) each

period.
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From Stochastic Processes to

Markov Chains
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Without Control: The Shock Process

• Productivity evolves randomly: zt+1 depends on zt .

• This sequence {zt} is a stochastic process.

• To model persistence, assume zt follows a Markov chain.
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Markov Property

Definition
A process {zt} is Markov if

P(zt+1 | zt , zt−1, . . .) = P(zt+1 | zt).

• In Brock–Mirman: productivity has memory only of the last period.

• Example: 2-state productivity {H, L} with transition matrix

P =

[
p 1− p

1− q q

]
.
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Expected Rewards with a Markov Chain

• For a fixed policy, the induced process is a DTMC.

• DTMC theory: stationary distributions allow computation of

long-run averages.

• With discounting, expected reward is

E

[ ∞∑
t=0

βtu(Ct)

]
.
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Adding Control: The MDP

Framework



Adding Back Control

• State: (Kt , zt).

• Action: consumption choice Ct (or equivalently next capital Kt+1).

• Transition:

Kt+1 = zt f (Kt)− Ct , zt+1 ∼ P(· | zt).

• Reward: u(Ct).
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Definition: Infinite-Horizon MDP

• State space S , action space A(s).

• Transition kernel P(s ′ | s, a).
• Reward function r(s, a).

• Discount factor β ∈ (0, 1).

Policy
A stationary policy π : S → A maps states to actions.
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Value Functions

• Value of policy π:

V π(s) = Eπ
s

[ ∞∑
t=0

βtr(st , at)

]
.

• Optimal value:

V ∗(s) = sup
π

V π(s).
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Bellman Optimality



Bellman Optimality Equation

Theorem (Bellman)
There exists an optimal stationary policy π∗ and

V ∗(s) = max
a∈A(s)

{
r(s, a) + β

∑
s′

P(s ′ | s, a)V ∗(s ′)
}
.
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Sketch of Proof

1. Define Bellman operator T :

(TV )(s) = max
a

{r(s, a) + β
∑
s′

P(s ′ | s, a)V (s ′)}.

2. Show T is a contraction under sup norm.

3. Banach fixed point theorem =⇒ unique V ∗.

4. Greedy policy wrt V ∗ is optimal.
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Application: Solving

Brock–Mirman



Bellman Equation for Growth Model

V (K , z) = max
C

{u(C ) + β E[V (K ′, z ′) | z ]} ,

subject to K ′ = zf (K )− C .
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Economic Insights

• Optimal consumption-saving policy derived from Bellman equation.

• Shocks are persistent =⇒ precautionary saving motive.

• Links to modern RBC and DSGE models.
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What the Bellman Equation Delivers in Brock–Mirman

• Closed-form policy: With log utility and Cobb–Douglas f (K ),

optimal consumption is a constant fraction of output:

Ct = (1− αβ) ztK
α
t .

• Markov sufficiency: Optimal action depends only on current state

(Kt , zt).

• Role of parameters:

• Higher patience β ⇒ more saving.

• Higher productivity shock zt ⇒ proportional rise in both Ct and Kt+1.

• Big picture: Dynamic programming makes stochastic growth

tractable; this recursion became the prototype for modern RBC

models.
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