#### Markov Decision Processes in Economics

Stoc Proc 25-26, Based on Brock-Mirman (1972, JET)

Srikanth Pai, Asst. Prof, MSE

#### A Classic Problem: Growth with Uncertainty

- Each period, the economy produces output using last period's capital and today's productivity.
- Productivity can be *high* or *low* and changes over time in a random but persistent way.
- A planner chooses how much of today's output to consume and how much to save as new capital for tomorrow.
- The tradeoff: enjoy consumption now vs. invest to raise uncertain future production.
- Goal: choose consumption/saving each period to maximize society's discounted well-being over time.

#### Formal Setup (Brock-Mirman, 1972)

- **State variables:** capital  $K_t$ , productivity  $z_t$ .
- Production:  $Y_t = z_t f(K_t)$ .
- Resource constraint:  $Y_t = C_t + K_{t+1}$  (no depreciation for simplicity; include  $\delta$  if needed).
- Shock dynamics:  $z_{t+1} \sim P(\cdot \mid z_t)$  (finite-state Markov or AR(1) in logs).
- Objective:

$$\max_{\{C_t\}_{t\geq 0}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(C_t)\right], \qquad 0 < \beta < 1.$$

• Control: choose  $C_t$  (equivalently choose  $K_{t+1} = z_t f(K_t) - C_t$ ) each period.



# From Stochastic Processes to Markov Chains

#### Without Control: The Shock Process

- Productivity evolves randomly:  $z_{t+1}$  depends on  $z_t$ .
- This sequence  $\{z_t\}$  is a stochastic process.
- To model persistence, assume  $z_t$  follows a Markov chain.

#### Markov Property

#### **Definition**

A process  $\{z_t\}$  is Markov if

$$P(z_{t+1} \mid z_t, z_{t-1}, \ldots) = P(z_{t+1} \mid z_t).$$

- In Brock-Mirman: productivity has memory only of the last period.
- Example: 2-state productivity  $\{H, L\}$  with transition matrix

$$P = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}.$$

5

#### **Expected Rewards with a Markov Chain**

- For a fixed policy, the induced process is a DTMC.
- DTMC theory: stationary distributions allow computation of long-run averages.
- With discounting, expected reward is

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^t u(C_t)\right].$$

#### \_\_\_\_\_

**Framework** 

Adding Control: The MDP

#### **Adding Back Control**

- State:  $(K_t, z_t)$ .
- Action: consumption choice  $C_t$  (or equivalently next capital  $K_{t+1}$ ).
- Transition:

$$K_{t+1} = z_t f(K_t) - C_t, \quad z_{t+1} \sim P(\cdot \mid z_t).$$

• Reward:  $u(C_t)$ .

#### **Definition: Infinite-Horizon MDP**

- State space S, action space A(s).
- Transition kernel P(s' | s, a).
- Reward function r(s, a).
- Discount factor  $\beta \in (0,1)$ .

#### **Definition: Infinite-Horizon MDP**

- State space S, action space A(s).
- Transition kernel P(s' | s, a).
- Reward function r(s, a).
- Discount factor  $\beta \in (0,1)$ .

#### **Policy**

A stationary policy  $\pi:\mathcal{S}\to\mathcal{A}$  maps states to actions.

#### **Value Functions**

• Value of policy  $\pi$ :

$$V^{\pi}(s) = \mathbb{E}_{s}^{\pi} \left[ \sum_{t=0}^{\infty} \beta^{t} r(s_{t}, a_{t}) \right].$$

• Optimal value:

$$V^*(s) = \sup_{\pi} V^{\pi}(s).$$

## Bellman Optimality

#### **Bellman Optimality Equation**

### Theorem (Bellman)

There exists an optimal stationary policy  $\pi^*$  and

$$V^*(s) = \max_{a \in A(s)} \Big\{ r(s, a) + \beta \sum_{s'} P(s' \mid s, a) V^*(s') \Big\}.$$

#### Sketch of Proof

1. Define Bellman operator T:

$$(TV)(s) = \max_{a} \{r(s, a) + \beta \sum_{s'} P(s' \mid s, a) V(s')\}.$$

- 2. Show T is a contraction under sup norm.
- 3. Banach fixed point theorem  $\implies$  unique  $V^*$ .
- 4. Greedy policy wrt  $V^*$  is optimal.

**Application: Solving** 

**Brock-Mirman** 

#### Bellman Equation for Growth Model

$$V(K,z) = \max_C \left\{ u(C) + \beta \, \mathbb{E}[V(K',z') \mid z] \right\},$$
 subject to  $K' = zf(K) - C$ .

#### **Economic Insights**

- Optimal consumption-saving policy derived from Bellman equation.
- ullet Shocks are persistent  $\Longrightarrow$  precautionary saving motive.
- Links to modern RBC and DSGE models.

#### What the Bellman Equation Delivers in Brock-Mirman

• Closed-form policy: With log utility and Cobb–Douglas f(K), optimal consumption is a constant fraction of output:

$$C_t = (1 - \alpha \beta) z_t K_t^{\alpha}.$$

- Markov sufficiency: Optimal action depends only on current state  $(K_t, z_t)$ .
- Role of parameters:
  - Higher patience  $\beta \Rightarrow$  more saving.
  - Higher productivity shock  $z_t \Rightarrow$  proportional rise in both  $C_t$  and  $K_{t+1}$ .
- Big picture: Dynamic programming makes stochastic growth tractable; this recursion became the prototype for modern RBC models.