Answers to Stochastic Process Pre-req Test

BA 2022, MSE, July 25th, 3:45-4:15 PM, 15 marks

- 1. Write your name and roll number on the top right.
- 2. Answer all the questions on the paper and return the paper. You can draw a margin and do rough work on the side. Put a box around the final answer.
- 3. For Problems 1, 2, 3, 4, 5, 6: Just write the final answer. Use the space for rough work.
- 4. The symbol $X \sim D(f)$ means that the random variable X is distributed according to the distribution D with parameters f.
- 5. A Bernoulli(p) random variable X takes only two values $\{0,1\}$ for the purposes of this test. By definition,

$$\Pr(X=1) = p.$$

Questions

- 1. [6 marks] Write down the range of the random variable, pdf/pmf, the mean and the variance of the following distributions. I have written the first one as an example.
 - (a) Exponential(λ):
 - i. Range is the set of all non-negative real numbers.
 - ii. Probability density function $f(x) = \lambda e^{-\lambda x}$ in the range.
 - iii. Mean is $\frac{1}{\lambda}$ and variance is $\frac{1}{\lambda^2}$.
 - (b) $Poisson(\lambda)$
 - i. Range is the set of all non negative integers.
 - ii. Probability mass function

$$f(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

in the range.

- iii. Mean is $\underline{\lambda}$ and variance is $\underline{\lambda}$.
- (c) Normal (μ, σ^2)
 - i. Range is the set of all real numbers.
 - ii. Probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

in the range.

- iii. Mean is μ and variance is $\underline{\sigma^2}$.
- 2. [1 mark] Let $N \sim \text{Binomial}(5, \frac{1}{2})$. What is the maximum value of the pmf of N? [In other words, let $f_N(k) = \Pr(N = k)$ denote the pmf of N where k is in the range of N. Compute the maximum value of $f_N(k)$ as k varies]. Solution: The p.m.f of N is

$$f_N(k) = \frac{\binom{5}{k}}{2^5}$$
, for $k = 0, 1, 2, 3, 4, 5$

If you compute all 6 values of the p.m.f., then we get

$$\left(\frac{1}{32}, \frac{5}{32}, \frac{10}{32}, \frac{10}{32}, \frac{5}{32}, \frac{1}{32}\right).$$

Clearly the maximum value is $\left| \frac{5}{16} \right|$

This question checks if one knows the definition of Binomial pmf and is willing to list out numbers to check for maximum value ('getting your hands dirty').

3. [1 mark] Let $X, Y \sim \text{Bernoulli}(0.314)$ and suppose they are independent random variables. Compute

$$\Pr(X = 0 \mid X + Y = 1)$$

Solution: Let p = 0.314. Applying the definition of conditional probability

$$\Pr(X = 0 \mid X + Y = 1) = \frac{\Pr(X = 0 \text{ and } X + Y = 1)}{\Pr(X + Y = 1)}$$

We compute both the numerator and denominator separately.

(a) The numerator computation:

$$\Pr(X = 0 \text{ and } X + Y = 1) = \Pr(X = 0 \text{ and } Y = 1) = \Pr(X = 0) \Pr(Y = 1) = p(1 - p).$$

The second equality above follows from independence of X, Y and the third from $X, Y \sim \text{Bernoulli}(p)$.

(b) Now for the denominator computation:

$$\Pr(X+Y=1) = \Pr(X=0 \text{ and } Y=1) + \Pr(X=1 \text{ and } Y=0) = \Pr(X=0) \Pr(Y=1) + \Pr(X=1) \Pr(X=1) = 2p(1-p).$$

So we see that

$$\Pr(X=0 \mid X+Y=1) = \frac{\Pr(X=0 \text{ and } X+Y=1)}{\Pr(X+Y=1)} = \frac{p(1-p)}{2p(1-p)} = \boxed{\frac{1}{2}}.$$

This question checks if people can recall and apply the definition of conditional probability and independence.

4. [1 mark] A fair coin is tossed 5 times. Let S_n denote the number of tails in the *n*th toss for n = 1, 2, 3, 4, 5. Compute the probability

$$\Pr(S_3 = 2 \mid S_1 = 1, S_2 = 2, S_5 = 2)$$

<u>Solution</u>: $S_5 = 2, S_3 = 2$ implies that between the second and fifth tosses the number of tails has not increased. This means that $S_3 = 2, S_4 = 2$ for sure. Thus $S_1 = 1, S_5 = 2, S_2 = 2 \implies S_3 = 2$. Therefore the required probability is 1. At this point, if you want a rigorous proof for the above argument used in the conclusion, let us state it precisely and prove it.

Claim. If events A, B are events such that $A \implies B$, then $\Pr(B|A) = 1$.

Proof. If $A \implies B$, then the event (A and B) = A. Thus if $A \implies B$, we have

$$\Pr(B|A) = \frac{\Pr(A \text{ and } B)}{\Pr(A)} = \frac{\Pr(A)}{\Pr(A)} = 1.$$

This question checks if people understand the meaning of conditional probability.

5. [1 mark] Let X, Y, Z are all independent random variables and suppose all of them are Bernoulli(0.25) random variables. Compute

$$\mathbb{E}((X+Y)(Y-Z))$$

Solution: For a Bernoulli(p) random variable

$$\mathbb{E}(X) = \mathbb{E}(X^2) = p.$$

Now we multiply out and apply linearity of expectation

$$\mathbb{E}((X+Y)(Y-Z)) = \mathbb{E}(XY - XZ + Y^2 - YZ) = \mathbb{E}(XY) - \mathbb{E}(XZ) + \mathbb{E}(Y^2) - \mathbb{E}(YZ)$$

For independent random variables: $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. Using that we get:

$$\mathbb{E}(XY) - \mathbb{E}(XZ) + \mathbb{E}(Y^2) - \mathbb{E}(YZ) = \mathbb{E}(X)\mathbb{E}(Y) - \mathbb{E}(X)\mathbb{E}(Z) + \mathbb{E}(Y^2) - \mathbb{E}(Y)\mathbb{E}(Z) = p^2 - p^2 + p - p^2 = p - p^2 = \boxed{\frac{3}{16}}$$

This problem was created to trap people who assume

$$\mathbb{E}((X+Y)(Y-Z)) = \mathbb{E}(X+Y)\mathbb{E}(Y-Z)$$

which is false since the two factors are not independent random variables.

- 6. [1 mark] If X_1, X_2, \dots, X_{10} are independent random variables then which of the following options are always true?
 - (a) Three random variables $X_1X_2^2$, $X_3X_4^3X_5^4$, $X_9 \sin X_8$ are independent.
 - (b) If $Y_n = X_{n+1} X_n$ for $1 \le n \le 9$ then the random variables Y_2, Y_5, Y_7, Y_9 are independent.
 - (c) Three random variables $X_1 X_2^2 X_3$, $X_3 X_4^3 X_5^4$, $X_9 \sin X_8$ are independent.
 - (d) If $Y_n = X_{n+1} X_n$ for $1 \le n \le 9$ then the random variables Y_2, Y_3, Y_7, Y_9 are independent.

Solutions: Only options a, b are true.

Fact. If we have a collection of independent random variables, then any collection of expressions made out of disjoint subsets of variables is again independent.

In option a, the expressions are made out of $\{X_1, X_2\}, \{X_3, X_4, X_5\}, \{X_8, X_9\}$ which are disjoint. In option b, the expressions are made out of $\{X_2, X_3\}, \{X_5, X_6\}, \{X_7, X_8\}, \{X_9, X_{10}\}$ which are again disjoint. However in option c, X_3 is common to first two expressions and in option d, X_3 is common to the first two variables.

This problem checks whether people know to spot independent random variables which is a fundamental requirement for the course.

7. [2 marks] A fair coin is tossed 5 times. Let S_n denote the number of tails in the first n tosses for n = 1, 2, 3, 4, 5. Compute the conditional expectation

 $\mathbb{E}(S_5|S_3)$

as a function of S_3 .

Solution: Let N_k denote the number of tosses in the kth toss, then we know that

$$S_k = N_1 + N_2 + \dots + N_k.$$

We directly use the definition of conditional expectation:

$$g(y) = \mathbb{E}(X|Y = y) = \sum_{x} x \operatorname{Pr}(X = x|Y = y).$$

As y varies, we generally denote this random variable as $\mathbb{E}(X|Y) = g(Y)$. So applying definition, we compute

$$g(y) = \mathbb{E}(S_5|S_3 = y) = \mathbb{E}(S_3 + N_4 + N_5|S_3 = y) = \mathbb{E}(S_3|S_3 = y) + \mathbb{E}(N_4|S_3 = y) + \mathbb{E}(N_5|S_3 = y).$$

Now we can compute each term using the definition given above to continue our string of equalities:

$$\mathbb{E}(S_3|S_3 = y) + \mathbb{E}(N_4|S_3 = y) + \mathbb{E}(N_5|S_3 = y) = y + \mathbb{E}(N_4) + \mathbb{E}(N_5) = y + \frac{1}{2} + \frac{1}{2} = y + 1.$$

Thus $g(S_3) = S_3 + 1$. A short hand way to encode this entire calculation is by discarding the g function:

$$\mathbb{E}(S_5|S_3) = \mathbb{E}(S_3 + N_4 + N_5|S_3) = \mathbb{E}(S_3|S_3) + \mathbb{E}(N_4|S_3) + \mathbb{E}(N_5|S_3) = S_3 + \mathbb{E}(N_4) + \mathbb{E}(N_5) = S_3 + \frac{1}{2} + \frac{1}{2} = S_3 + 1.$$

The second equality follows from linearity of expectation. The third equality follows from the fact that N_4, N_5 are independent of S_3 (follows from Fact in the previous problem). The fourth equality follows from expectation of Bernoulli(0.5) random variable (see Problem 5 solution).

This problem checks if you know, understand and can apply the definition of conditional expectation in a problem. This was the only problem which was supposed to be hard.