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Preface

I am a curious person with little knowledge of finance and economics, so I urge the reader
to not take my finance/economics ideas seriously. It is essentially a layman’s view of the
subject. I love to learn new ideas, so I will be delighted to be corrected. So, you can
always tell me where I am wrong by writing an email or telling me directly if you spot me
somewhere at MSE.

The goal of mathematical training is to make ideas precise. So when mathematics
is written, the definitions are stated clearly, precise claims are proposed, and then these
claims are proved rigorously. A collection of examples usually motivates the questions.
The examples are also used to test the claims. It is always worthwhile to study examples
that are important to humanity. After all, we all live in this world briefly, so why squabble
our precious time and energy on inconsequential examples? I.I.D processes, Markov pro-
cesses, Martingales and Brownian motions are essential examples of stochastic processes
that are widely studied because they arise very often when we look at the world around
us. Natural questions about these processes are proposed in this text, and the answers are
stated precisely using a theorem-proof format. We will also apply the theorems to many
problems and learn to compute efficiently.

2



DE13 Fundamentals of Probability

※ Fundamentals of Probability

The primary objective of probability theory is to provide a framework for studying the
chances of interesting events that happen in the real world. We view all such interesting
phenomena as experiments. Imagine we are studying an experiment that involves chance
and we can contemplate the collection of all possible outcomes of the experiment. The
plan is to model real life events using set theory. A textbook example of an experiment is
tossing a coin indefinitely and here is a quick dictionary:

English Math Translation
Collection of all outcomes Sample space Ω
An outcome is realized/The experiment is performed Pick $ ∈ Ω
An event E � is a subset of Ω
An experiment is performed and the event E has occurred Pick $ ∈ Ω and $ ∈ �
An event E implies event F � ⊆ �
The chance of E happening is ? Pr(�) = ?

In otherwords, themain actors of the story are events andprobability assigned to every
event. In school we learn to add, subtract, and multiply numbers. The rules governing
these numbers is called arithmetic, but when the rules are generalized to variables, we
call the subject ‘Algebra’. In the same way there is an associated algebra of manipulating
events by forming composite events using simple events. We implement this algebra
using algebra of sets. The analog of addition is union, multiplication is intersection and
negation is complement (Don’t take the analogy too literally!). Imagine an experiment has
been performed and an outcome has been realized. Thismeanswe have picked an element
$ ∈ Ω. Here is a quick dictionary between composite events and algebra of sets: For a
countable collection, �1, �2, . . . , �= . . ., of subsets,

Atleast one of the events �8 happens $ ∈ �1 ∪ �2 ∪ . . . ∪ �= ∪ . . .
All the events �8 simultaneously happen $ ∈ �1 ∩ �2 ∩ . . . ∩ �= . . .
Event �1 has not occurred $ ∈ �21

In yourfirst yearmath course, youwere introduced to anewoperation: limits! Calculus
is founded on the notion of limits of functions and the interactions of limits with algebra
of variables. In a similar way, we want to be able to work with limits in probability. So
above we have considered the dictionary for countable collection of events.

It is natural to wish that given basic events, the countable unions, countable inter-
sections and complements of these basic events are also events. This wish leads to the
following definition.
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Definition 1.1. Let Ω be a given set. If ℱ is a collection of subsets of Ω that are closed
under countable unions, countable intersections and complements, then we say ℱ is a � -
algebra.

The central focus of probability theory is to explore questions of the type: What is the
chance associated to an event? Given a sample spaceΩ and any event � in a �-algebra ℱ ,
we want to assign a number Pr(�) that measures the chance that the event � occurs. The
assignment of chance to events transforms algebra of manipulating events to the algebra
of real numbers. The rules governing the transformations is decreed in the axioms of
probability theory:

Definition 1.2. A triple (Ω, ℱ , Pr), where Ω is a set, ℱ is a �-algebra of subsets and
Pr : ℱ → R is a function, that satisfy

1. (Axiom 1) For any � in ℱ , Pr(�) ≥ 0.

2. (Axiom 2) Pr(Ω) = 1.

3. (Axiom 3) If �1, �2, . . . �= . . . in ℱ are a countable or a finite collection of disjoint
subsets, then

Pr

( ∞⋃
8=1

�8

)
=

∞∑
8=1

Pr(�8).

is called a probability space.

The sample space Ω represents the collection of all outcomes of an experiment and
we can consider it synonymous with the experiment itself. The collection of subsets ℱ
represents a collection of interesting events. Finally the function Pr is called a probability
measure that measures chances of events. The first axiom states that chances of events is
a non-negative number. The second axiom says that any outcome is surely in the sample
space. The third axiom states: The chance that atleast one of the events in a countable (or
finite) collection ofmutually exclusive events occurs is the sumof the chances of individual
events. It mimics the principle in geometry “The total area of the union of disjoint regions
is the sum of the areas of its parts.” Or we can simply remember it as “the whole is the
sum of its parts”.

A few immediate consequences of the axioms:

1. Let ) denote the empty set, then

Pr()) = 0.
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Proof: Apply Axiom 3 to two disjoint sets �1 = �2 = ) to get

Pr()) + Pr()) = Pr() ∪ ))
Pr()) + Pr()) = Pr())

Pr()) = 0.

2. (Monotonicity) Let �, � denote the two elements of ℱ with � ⊂ � then

Pr(�) ≤ Pr(�).

Proof: Apply Axiom 3 to two disjoint sets �1 = �, �2 = �
2 ∩ � to get

Pr(�1) + Pr(�2) = Pr(�1 ∪ �2)
Pr(�) + Pr(�2 ∩ �) = Pr(�)

Since by Axiom 1, Pr(�2 ∩ �) ≥ 0, we have

Pr(�) ≤ Pr(�).

3. (Complement rule) Let � be an event then

Pr(�) + Pr(�2) = 1.

Proof: Apply Axiom 3 to two disjoint sets �1 = �, �2 = �
2 to get

Pr(�1) + Pr(�2) = Pr(�1 ∪ �2)
Pr(�) + Pr(�2) = Pr(Ω)

Since by Axiom 2, Pr(Ω) = 1, so we are done.

4. (Union rule) Let �, � be events then

Pr(� ∪ �) + Pr(� ∩ �) = Pr(�) + Pr(�).

Proof: Exercise!

Lemma. Let �1, �2, . . . be a sequence of events and let � = ∪∞
==1�= , then

Pr(�) = lim
=→∞

Pr(�=).

Proof. Let� = �1∪(�2\�1)∪(�3\�2) . . .which is a disjoint union (drawVenn diagrams!).
From proof of Monotonicity rule above, note that

Pr(�8+1 \ �8) = Pr(�8+1) − Pr(�8).
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Apply Axiom 3 to the disjoint union presentation of A to get

Pr(�) = Pr(�1 ∪ (�2 \ �1) ∪ (�3 \ �2) . . .)
= Pr(�1) + Pr(�2 \ �1) + Pr(�3 \ �2) . . .
= Pr(�1) + (Pr(�2) − Pr(�1)) + (Pr(�3) − Pr(�2)) . . .
= lim
=→∞

Pr(�=)

�

Let us see three important classes of examples.

Example 1.3. Let Ω = {$1, $2, . . .} be a countable/finite set and let 5 : Ω → [0, 1] be a
function with the property

∞∑
8=1

5 ($8) = 1.

Let ℱ be the set of all subsets of Ω. Check that ℱ is a �-algebra. Let � be any element of
ℱ , define

Pr(�) :=
∑
$∈�

5 ($).

Nowcheck the the three axioms. The first two are straightforward. The last axiom requires
some real analysis.

Here are some examples of 5 :

1. (Bernoulli distribution) Set Ω = {0, 1} and let ? be a real number between 0 and 1.
Let 5 (1) = ? and 5 (0) = 1 − ?.

2. (Binomial distribution) For a positive integer =, set Ω = {0, 1, 2, 3, · · · , =}. Let a real
number ? between 0 and 1 be given. Then let

5 (:) =
(
=

:

)
?:(1 − ?)=−: .

3. (Geometric distribution) Set Ω = Z≥0. For a real number ? between 0 and 1, let

5 (:) = ?(1 − ?): .

Example 1.3 is the setup of discrete probability theory. Coin tosses, and rolling dice
experiments fit into the above framework since the sample space of outcomes is a finite
set in these cases.
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Example 1.4. Let Ω = R and let ℱ be the smallest �-algebra that contains all intervals of
the form (0, 1] for all reals 0, 1. For any non-negative continuous function 5 : R→ [0, 1]
such that ∫ ∞

−∞
5 (G) 3G = 1,

we define

Pr{(0, 1]} =
∫ 1

0

5 (G) 3G

Note that the proof of axiom 3 is highly technical.

Here are some examples of 5 :

1. (Uniform distribution) Let 5 (G) = 1
1 − 0 for 0 < G < 1 and 5 (G) = 0 otherwise.

2. (Exponential distribution) For a positive real number �, let 5 (G) = �4−�G for G > 0
and 5 (G) = 0 otherwise.

3. (Normal distribution) For a real numbers �, �2, let

5 (G) = 1√
2��2

4
−
(G − �)2

2�2 .

Example 1.4 is the setup of the probability theory of continuous random variables.
Picking a random real number in an interval, and the random time it takes for a device to
break down are examples of continuous random variables.

Example 1.5. Let (Ω, ℱ , Pr) be a probability space and let � be an element of ℱ , then we
can define a new triple (�, ℱ� , Pr�) as follows:

1. � is the sample space of the new triple.

2. ℱ� is the set of all subsets of Ω of the form � ∩ � where � is in ℱ . Clearly any
element of ℱ� is a subset of �. Prove that ℱ� is a �-algebra.

3. Let � be an element of ℱ� . Define

Pr�(�) := Pr(� ∩ �)
Pr(�) .

Check that the axioms are satisfied (straightforward exercise). We quickly remark
that usually we know this measure as

Pr�(�) = Pr(� | �).

Example 1.5 shows that given an event � associated with a probability space, we can
define a newprobability space that represents “conditional probabilities”. The probability
measure Pr� is called the conditional probability measure.
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1.1 Random variables and their distribution

First we define a random variable.

Definition 1.6. Given a probability space (Ω, ℱ , Pr), a random variable - : Ω → R is a
function so that the subsets {0 < - ≤ 1} belong to ℱ for any reals 0, 1.

Given a random variable - defined on a probability space (Ω, ℱ , Pr), define the cumu-
lative distribution function (c.d.f) of - as

�-(1) := Pr(- ≤ 1).

Note that this means Pr(0 < - ≤ 1) = �-(1) − �-(0).

Few quick properties of c.d.fs:

1.
lim
1→∞

�-(1) = 1, lim
1→−∞

�-(1) = 0.

2. �- is a non-decreasing function.

3. If �-(G) is differentiable, then
5 (G) := 3�-

3G

is called the probability density function (or p.d.f) of -. Examples of p.d.f.s 5 are given
in Example 1.4.

4. In case - is a discrete random variable, then �- is piecewise constant and if the
jumps occur at G1, G2, . . ., then the magnitude of the jump at G8 is called the p.m.f
5 (G8), i.e.

5 (G8) := �(G8) − lim
G→G−

8

�(G).

Note that the sum of the p.m.f values should be 1.

If �- is a differentiable function and �′
-
= 5 , then we have

Pr{0 < - ≤ 1} =
∫ 1

0

5 (G) 3G.

Let us informally discuss the meaning of density function.
What is the meaning of probability density function? Intuitively, density is a measure
of how densely something is packed in a given region. We have seen that probability
assigned to a point in a continuous sample space can be zero for some random variables.
So in Example 1.4 we decided to assign probability to intervals. This means instead of
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asking “What is the chance that - = G?”, we have to settle for the question “What is the
chance that G − &

2 < - ≤ G + &
2?” for a small error of &. If a random variable - has p.d.f

5 (G), then
Pr(G − &

2 < - ≤ G + &
2 ) ≈ 5 (G)&

assuming 5 (G) is constant in the small interval. Since & is the length of the interval
� = (G − &

2 , G + &
2 ), we see that

5 (G) = Pr(- ∈ �)
;4=6Cℎ(�) .

In words, we can say the at a point G, 5 (G)measures the chance at G per unit length.

1.2 Joint p.m.fs

1.3 Expectation

In this chapter, we will collect facts that will be used in the upcoming chapters.

Show sum of finite number of i.i.d Bernoullis is Binomial.

Proposition 1.7. If we pick disjoint subsets of ) and sum the values of i.i.d process on
each subset of ), the resulting set of random variables in still independent.

※ Introduction to Stochastic Processes

When we look at the world around us, we see interesting phenomenon that changes over
time. Often the variations in these processes have unknown or random causes. The
theory of probability is very useful as a tool to analyze such processes and study of these
processes using the tools of probability theory is called the theory of stochastic processes.

Stochastic processes are crucial in economics and finance, capturing the inherent ran-
domness inmarkets and economic activities. Frommodeling stock prices using geometric
Brownian motion to predicting economic growth through randomwalks, these processes
provide powerful tools to understand and forecast complex systems. Landmark results,
such as the Black-Scholes-Merton model for option pricing and the Efficient Market Hy-
pothesis, deeply rely on stochastic processes. These models not only offer profound
insights but also drive practical applications, underscoring the natural and indispensable
role of randomness in economic and financial analysis.1

Let us start with the definition of a stochastic process.

1Thanks ChatGPT.
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Definition 2.1. A stochastic process {-C}{C∈)} is a collection of random variables indexed
by an indexing set ). The parameter C is generally called time.

Please note that to specify a stochastic process, you have to specify a set) (indexing set)
and then define a collection of random variables -C for each C in ). In order to understand
this definition, we will now see many natural examples.

Example 2.2. Suppose a coin is tossed forever. Let ) = N denote the set of all natural
numbers. Let #: denote the number of tails in the :th toss for each natural number :.
Note that #: is either 0 or 1. Now {#:}{:∈)} is a stochastic process. All the random
variables that make up this process are independent and identically distributed. So this
is an example of an i.i.d process.

Example 2.3. Suppose a coin is tossed forever. Let ) = N denote the set of all natural
numbers. Let (: denote the number of tails in the first : tosses for each natural number
:. Note that (: ∈ {0, 1, 2, 3, · · · , :}. Now {(:}{:∈)} is a stochastic process. This stochastic
process is an example of a discrete time Markov chain which is the focus of Section 3. Note
that this stochastic process takes discrete values (hence ’chain’) and the indexing set is
also discrete.

This example relates to the previous example since (: = #1 + #2 + . . . + #: .

Example 2.4. Suppose we stand at the MSE entrance and keep track of the ACs that are
taken out ofMSE for repair. Let) = [0,∞) denote the set of all non-negative real numbers.
Let �C denote the number of ACs that have gone for repair in the the interval [0, C] for each
C ∈ ) with �0 = 0. Note that �C is a non-negative integer. Now {�C}{C∈)} is a stochastic
process.

This stochastic process is an example of a continuous time Markov chain. This stochastic
process takes discrete values (hence ‘chain’) but the indexing set is not discrete. We will
study this in detail in Section 5.

Interestingly, we can obtain another stochastic process from {�C}{C∈)}. If we assume
that atmost 1 AC is carried out at any instant of time, then define ): as the time elapsed
between the :th AC and :+1th AC being carried out. This produces a stochastic process of
‘waiting times’ {):}{:∈N}. If the stochastic process of waiting times is an i.i.d process with
an exponential distribution, then the continuous time Markov chain is called a Poisson
process and it is the focus of the Section 4.

Example 2.5. Let ) be the set of natural numbers. A gambler’s fortune -= after playing
the =th betting game gives us a stochastic process {-=}{=∈)}. If we assume all the betting
games are fair games, then we get a Martingale process which will be studied in 6.
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Example 2.6. Suppose you are very interested in a particular stock. Let ) = [0,∞) denote
the set of all non-negative real numbers. Let %C denote the stock price at time C for each
C ∈ ). Note that %C will be considered to be a real number and we will plot the stock price
chart as a continuous function (when considered over very long periods of time). Now
{%C}{C∈)} is a stochastic process.

Recall that while studying the theory of probability, we start with an experiment
and then collect all possible outcomes of the experiment into a set called the sample
space, denoted by Ω. An outcome is usually denoted by the greek letter $. Practically
speaking, these outcomes are randomly realized when we perform the experiment. We
measure how random the outcomes are by assigning probabilities to these outcomes
(either intuitively or guided by statistical inferences from real world data). Any function
of these random outcomes will be random and are usually termed as random variables. In
terms of mathematical symbols, a function - : Ω→ R is a random variable.

The examples above contained a real-life experiment we wished to model. However, it
might only sometimes be possible to list the experiment’s outcomes in the above examples.
For instance, in the case of stockprices, the experiment is the the processes of the entire world!!.
The outcomesof this experiment could range anywhere from individual emotions to global
policies. It is not clear what the sample space would be in this case. At any rate, that
should not stop us from studying the behaviours of stocks. In this course, we often ignore
the sample space point of view for computation purposes and work directly with random
variables.

However from the point of view of conceptual understanding, the sample space point
of view clarifies the nature of a stochastic process. So let us consider Example 2.3. Since,
in this case, it is not hard to describe the sample space, it is a useful example to understand
the nature of a stochastic process.

Example 2.7. Suppose a coin is tossed forever. In this case, the a random outcome of this
experiment is an infinite list of heads and tails. Let us write collect all these outcomes and
write the set formally as

Ω = {$ = ($1, $2, . . .)|$8 ∈ {�,)} for all 8}.

An example outcome is an infinite string of tosses

$ = (�,), ), �, ), �, ), ), ), ), . . .) = �))�)�)))) . . .

where all the tosses are tails from the seventh toss onwards. Note that we also suppress
the commmas and the parantheses and simply write the infinite list as an infinite string.

11
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Let ) = N denote the set of all natural numbers. Let (: denote the number of tails
in the first : tosses for each natural number :. Clearly each (: is a random variable, i.e.
(: : Ω→ R. For instance, consider the outcome $ considered earlier and fix : as 10. The
value of

(10($) = (10(�))�)�)))) . . .) = 10.

In fact, can you see that
(:($) = : − 3 for : ≥ 7?

So we see that the stochastic process ( is a function of time (:) and the random out-
come ($) of the experiment. All the sources of randomness is captured in $. Once you
fix $, the sequence {(:($)}{:∈N} is a deterministic process. In our example if we fix $ =

(�,), ), �, ), �, ), ), ), ), . . .) = �))�)�)))) . . ., the sequence is (0, 1, 2, 2, 3, 3, 4, 5, 6, 7 . . .).
The summary of the discussion is that if you fix omega, the stochastic process is a

deterministic process and if you fix time index : the stochastic process at that instant of
time returns a random variable (: .

Stochastic processes studied in this text have nice properties described below.

Definition 2.8.

1. Given a stochastic process {-C}{C∈)}, a difference random variable -1 − -0 for 1 > 0

(in )) is called an increment. The increment is the net change in the value of the
process in the interval [0, 1] contained in ). We say that -1 − -0 is the increment
associated to the interval [0, 1].

2. A stochastic process {-C}{C∈)} has the stationary increment property if the distribution
of the increment random variable associated to any interval [C + ℎ, C] in ) is purely
a function of ℎ and does not depend on C. In other words, the distribution -C+ℎ −-C
depends only on ℎ and not on C.

3. A collection of intervals of the form [C0, C1], [C1, C2], [C2, C3], . . . , [C:−1, C:] for some
integer : will be called successive.

4. A stochastic process {-C}{C∈)} has the independent increment property if the increments
associated to for any collection of successive intervals are independent random
variables.

Let us see an immediate example and a non-example.

Example 2.9. The stochastic process {(:}{:∈N} in Example 2.3 has both stationary and
independent increments. Let us prove these claims.

12
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First, we show that the process has stationary increments. Since time is discrete we will use
the standard symbol : instead of C. For :, ℎ ∈ N, consider the distribution of

(:+ℎ − (: = #:+1 + #:+2 + . . . + #:+ℎ .

Since #: form a i.i.d Bernoulli(?) process, the sum of ℎ random variables is distributed
as Binomial(ℎ, ?). Thus the r.v. (:+ℎ − (: is distributed as Binomial(ℎ, ?). Clearly this is
independent of :. Thus we have stationary increments.
Next, we show that the process has independent increments. Since time is discrete we
will use the standard symbol : instead of C. For any collection of successive intervals
[:0, :1], [:1, :2], [:2, :3], . . . , [:;−1, :;], we have to show that increments associated to the
intervals are independent random variables. But note that the increment associated to the
interval [:0, :1] is

(:1 − (:0 = #:0+1 + #:0+2 + . . . + #:1 .

Note that this increment is the sum of the independent random variables#8 in the interval
(:0, :1]. Since the successive intervals (:8 , :8+1] aredisjoint, the increments in the successive
intervals are sum of i.i.d processes on disjoint subsets of ). So by Proposition 1.7, the
increments are independent.

Example 2.10. The stochastic process {#:}{:∈N} in Example 2.2 has stationary increments
and but not independent increments. Let us prove these claims.
First, we show that the process has stationary increments. Since time is discrete we will use
the standard symbol : instead of C. For :, ℎ ∈ N, consider the distribution of

� = #:+ℎ − #: .

Since# is an i.i.d Bernoulli(?) process, the difference randomvariable has a pmf supported
on {1, 0,−1} and the pmf is

?�(1) = Pr{#:+ℎ = 1, #: = 0} = ?(1 − ?) = ?�(−1), ?�(0) = ?2 + (1 − ?)2.

Thus the r.v. (:+ℎ − (: is distributed as Binomial(ℎ, ?). Clearly this is independent of :.
Thus we have stationary increments.
Next, we show that the process has independent increments. Since time is discrete we
will use the standard symbol : instead of C. For any collection of successive intervals
[:0, :1], [:1, :2], [:2, :3], . . . , [:;−1, :;], we have to show that increments associated to the
intervals are independent random variables. But note that the increment associated to the
interval [:0, :1] is

(:1 − (:0 = #:0+1 + #:0+2 + . . . + #:1 .

Note that this increment is the sum of the independent random variables#8 in the interval
(:0, :1]. Since the successive intervals (:8 , :8+1] aredisjoint, the increments in the successive
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intervals are sum of i.i.d processes on disjoint subsets of ). So by Proposition 1.7, the
increments are independent.

Suppose #(C) is a process valued in whole numbers and C ∈ R. Further if #(C) has
independent increment property and the distribution of the increment #(C + B) − #(C) ∼
Poisson(�B), then #(C) is called a Poisson point process. Note that this means #($) is an
increasing piecewise constant function.

Suppose ,(C) is a process valued in real numbers, C ∈ R and ,($) is a continuous
function. Further if,(C) has independent increment property and the distribution of the
increment,(C + B) −,(C) ∼ Normal(0, B), then,(C) is called a Weiner process.

14



DE13 Discrete time Markov Chains

※ Discrete time Markov Chains

For the purposes of this chapter, a discrete set is a set whose elements can be written as a
finite or infinite list. For instance, Z,Z≥0N are discrete sets. 2

Definition 3.1. A stochastic process {-=}{=∈W} with -= valued in a discrete set � is called
a discrete time Markov chain(DTMC) if

Pr{-= = 0= | -=−1 = 0=−1, -=−2 = 0=−2, · · · , -1 = 0=−1} = Pr{-= = 0= | -=−1 = 0=−1}

for all whole numbers = and for all 01, 02, · · · , 0=−1, 0= ∈ �.
A probability of the form Pr{-= = 0= | -=−1 = 0=−1} is called a transition probability. If
Pr{-= = 8 | -=−1 = 9} does not depend on =, then we say that the DTMC is homogenous.

We will only consider homogenous DTMCs. We start with a nice example of a DTMC.

Example 3.2. Youwalk into a casino with Rs.2000 to play a fair betting game. You can win
or lose Rs. 1000 per game. You plan to play the game until you hit Rs.3000 for the first time
and then take your winnings. Let -= denote the amount of money you have at the end
of the =th game. Note that the range of the random variable -= is {0, 1000, 2000, 3000}.
Note that outcome every game is independent of outcomes of the rest of the games.

Pr{-= = 0= | -=−1 = 0=−1, -=−2 = 0=−2, . . .} =
Pr{-= = 0= , -=−1 = 0=−1, -=−2 = 0=−2, . . .}

Pr{-=−1 = 0=−1, -=−2 = 0=−2, . . .}

=
Pr{-= = 0= , -=−1 = 0=−1, -=−2 = 0=−2, . . .}

Pr{-=−1 = 0=−1, -=−2 = 0=−2, . . .}

We can represent this data by a ‘chain’. /*insert figure*/

Example 3.3. Suppose a coin is tossed forever. Let (: denote the number of tails in the
first : tosses for each natural number :. Note that (: is a whole number. Now we prove
the stochastic process {(:}{:∈)} is a Markov chain. Let #: denote the number of tails in
the :th toss and let (: = #1 + #2 + . . . + #: .

Definition 3.4. Let {-=} be a homogenous DTMCwith countable, ordered set ( of states.
Let = be any natural number, define the =-step transition probability matrix %(=), whose
rows and columns are labelled by ( in the same order, as

%
(=)
8 9

:= Pr{-:+= = 8 | -: = 9}.

We will denote the one-step transition probability matrix (t.p.m) by % = %(1).
2The mathematically accurate terminology is ‘countable sets’. The precise definition is: ) is a countable

set if ) is in bĳection with natural numbers.

15



DE13 Discrete time Markov Chains

Theorem 3.5. Let {-=} be a DTMC with set of orderd set of states ( and t.p.m %. Then

%(=) = %= .

where %= is the matrix % raised to the power of =.

Proof. By definition %(1) = %, suppose we have shown %(=−1) = %=−1 Wewill show the 8 9th
entry match on both sides.

%
(=)
8 9
= Pr{-= = 8 | -0 = 9}

�

16



DE13 Poisson point process

※ Poisson point process

Definition 4.1. Let {#(C) | C ∈ [0,∞)} be a stochastic process with #(C) ∈ {0, 1, 2, 3, . . .}.
The stochastic process #(C) is called a Poisson point process if

1. #(0) = 0.

2. #(C + B) − #(B) ∼ Poisson(�C) for some positive real number � and all reals B, C.

3. #(C) has the independent increment property.

Note that the Poisson point process is a continuous time process but #(C) takes values
from a discrete set.

Definition 4.2. Let )8 denote the first time C when #(C) = 8 for 8 = 0, 1, 2, 3, · · · and the
random variables are called time of arrivals. The random variables ,8+1 := )8+1 − )8 , for
8 = 0, 1, 2, 3, · · · are called interarrival times (or waiting times).

The following theorem establishes few basic properties of Poisson point processes.

Theorem 4.3. The following facts are immediate:

1. #(C) has the stationary increment property.

2. Let = be a natural number. The interarrival times {,1,,2,,3, . . . ,,=} are in-
dependent random variable and each random variable has Exponential(�) as its
distribution.

3. The distribution of ‘time of arrival’ )= is Erlang(=,�).

Proof.

1. Since by second property in the definition of Poisson process #(C + B) − #(B) ∼
Poisson(�C), we see that the distribution of the increment is not dependent on B.

2. We will do it for the case of two variables ,1,,2. The general proof is similar.
Clearly the interarrival times are non-negative valued. So we will consider F1, F2 as
non-negative real numbers.

Pr{,2 > F2 | ,1 = F1} = Pr{)2 > )1 + F2 | )1 = F1}
= Pr{)2 > F1 + F2 | )1 = F1}
= Pr{#(F1 + F2) − #(F1) = 0 | #(F1) − #(0) = 1, #(C) − #(0) = 0 for C < F1}
= Pr{#(F1 + F2) − #(F1) = 0}

17



DE13 Poisson point process

= 4−�F2

The first equality follows from definition of interarrival times and the third equality
follows from the definition of arrival times. The fourth equality follows from inde-
pendent increment property since interval (F1, F1 + F2] is disjoint from (0, C] for all
C ≤ F1. The fifth equality follows from the second property of the Poisson process,
i.e. the distribution of #(F1 + F2) − #(F1) is Poisson(�F2).

Now we note that
Pr{,2 > F2 | ,1 = F1} = 4−�F2 .

Thus,1,,2 are independent random variables and further

Pr{,2 > F2} = 4−�F2

for F2 > 0. Thus,2 ∼ Exponential(�).

A similar calculation shows

Pr{,1 > F1} = Pr{)1 > F1}
= Pr{#(F1) − #(0) = 0}
= 4−�F1

Thus,1 ∼ Exponential(�).

3. Since )= = ,= +,=−1 + . . . +,1 and the sum of = i.i.d Exponential(�) variables is
Erlang(=,�). Note that the pdf of Erlang(=,�) is

5 (G) = �4−�G(�G)=−1

(= − 1)! for x > 0.

�

TheErlangdistribution is the special case of theGammadistribution. Youare supposed
to memorise the p.d.f of Gamma distribution. You should know the mean, median,
variance and mode of the Gamma distribution.

It turns out that any calculation in Poisson process theory is executed by rewriting
events in terms of increments of disjoint intervals. So let us setup some notations and a
dictionary to aid our calculations:

Definition 4.4. Let #(C) be a Poisson point process with rate �, then for 0 < 0 < 1 < 2 <

3 < . . . let us write
#[0, 1, 2, 3, 4 . . .] = [?, @, A, B . . .]

18



DE13 Poisson point process

Events in terms of (inter-)arrival times and process Events in terms of increments of disjoint intervals
{)1 > C1} {#[0, C1] = [0]}
{)1 = C1 , #(C) = 2} {#[0, B , C1 , C] = [0, 1, 1] for all B < C1}
{C1 ≤ )1 < C1 + 3C1 , C2 ≤ )2 < C2 + 3C2 , #(C) = 3} {#[0, C1 , C1 + 3C1 , C2 , C2 + 3C2 , C] = [0, 1, 0, 1, 1]}

Table 1: Few examples of moving between equivalent events.

to mean

#(1) − #(0) = ?
#(2) − #(1) = @
#(3) − #(2) = A
#(4) − #(3) = B

. = .

. = .

A dictionary of equivalent events that translates events of arrival times to events of
independent increments of the Poisson process is shown in Table 1.

In order to cut down on rigorous mathematical arguments, we will use the following
(intuitive) formulae involving infinitesimals (3G, 3C, . . .):

1. Let - be a random variable with p.d.f 5 , then

5 (G) 3G = Pr{G < - ≤ G + 3G}.

2. Let -1, -2 . . . , -= be a collection of = random variables with joint p.d.f 5 , then

5 (G1 , G2 , . . . , G=) 3G1 3G2 . . . 3G= = Pr{G1 < -1 ≤ G1+3G1 , G2 < -2 ≤ G2+3G2 , . . . , G= < -= ≤ G=+3G=}.

3. We will use 5 (C) + 3C = 5 (C) only if 5 (C) ≠ 0 and 3C + $(3C2) = 3C. For example
4−�3C = 1 − �3C + $(3C2) = 1 − �3C = 1

Remark 4.5. Strictly speaking the above formulae are ridiculous and can easily confuse
a careless novice. So one needs to take care while using infinitesimals. Learn from
discussions in class and chat with TAs if you are confused. If at any step you feel worried,
then go back to computing cdfs and differentiate cdfs to get pdfs.

Let us see an example of how to use the above intuitive rules.

19
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Example 4.6. Let#(C) be a Poisson processwith rate�, then the joint distribution of arrival
times )1, )2 is computed below. Let 0 < C1 < C2, then

5)1 ,)2(C1, C2)3C1 3C2 = Pr{C1 < )1 ≤ C1 + 3C1, C2 < )2 ≤ C2 + 3C2}
= Pr{#[0, C1, C1 + 3C1, C2, C2 + 3C2] = [0, 1, 0, 1]}
= (4−�C1)(4−�3C1�3C1)(4−�(C2−C1−3C1))(4−�3C2�3C2)
= (4−�C1)(4−�3C1�3C1)(4−�(C2−C1−3C1))(4−�3C2�3C2)
= 4−�C2�23C1 3C2.

So comparing we see that for 0 < C1 < C2, we have

5)1 ,)2(C1, C2) = 4−�C2�2.

The joint pdf vanishes for any other pair C1, C2.

Here is a list of exercises for you to practice.

Lemma 4.7. Let #(C) be a Poisson process with rate �, then

Pr{#[0, C1, C1 + 3C1] = [0, 1]} = 4−�C1� 3C1
Pr{#[0, C1, C1 + 3C1, C] = [0, 1, 0]} = 4−�C� 3C1
Pr{#[0, C1, C1 + 3C1, C] = [0, 1, 1]} = 4−�C�2(C − C1) 3C1

Pr{#[0, C1, C1 + 3C1, C2, C2 + 3C2] = [0, 1, 0, 1]} = 4−�C2�2 3C1, 3C2

Pr{#[0, C1, C1 + 3C1, C2, C2 + 3C2, C] = [0, 1, 0, 1, 0]} = 4−�C�2 3C1, 3C2

Pr{#[0, C1, C1 + 3C1, C2, C2 + 3C2, C] = [0, 1, 0, 1, 1]} = 4−�C�3(C − C2) 3C1, 3C2

For : > 1 Pr{#[3C] = [:]} = 0.

Example 4.8. Let us calculate a couple of related distributions.

1. Let = ≥ 1. The conditional p.d.f

5)1 |#(C)(B | #(C) = =) =
=

C

(
1 − B

C

)=−1

for 0 < B < C and 0 otherwise. This tells us that if it is known a point has arrived in
the interval [0, C], then the arrival time is uniformly distributed in the interval [0, C].

2. The conditional p.d.f

5)2 |)1 ,#(C)(C2 | )1 = C1, #(C) = =) =
= − 1
C − C1

(
1 − C2 − C1

C − C1

)=−1
, C1 < C < C2

for C1 < C2 < C and 0 otherwise.
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Proof. 1. Assume 0 < B < C,

5)1 |#(C)(B | #(C) = =) 3B = Pr{B < )1 < B + 3B |#(C) = =}

=
Pr{B < )1 < B + 3B, #(C) = =}

Pr{#(C) = =}

=
Pr{#[0, B , B + 3B, C] = [0, 1, = − 1]}

Pr{#(C) = =}

=
4−�C(� 3B) (�(C−B))

=−1

(=−1)!

4−�C (�C)
=

=!

=
=

C

(
1 − B

C

)=−1
3B

Clearly if B > C,

5)1 |#(C)(B | #(C) = 1) 3B = Pr{B < )1 < B + 3B |#(C) = 1} = 0.

2. Assume C1 < C2 < C,

5)2 |)1 ,#(C)(C2 | )1 = C1, #(C) = =) 3C2 = Pr{C2 < )2 < C2 + 3C2 |)1 = C1, #(C) = =}

=
Pr{C2 < )2 < C2 + 3C2, #(C) = = | )1 = C1}

Pr{#(C) = = | )1 = C1}

=
Pr{C2 < )2 < C2 + 3C2, #(C) − #(C1) = = − 1 | )1 = C1}

Pr{#(C) − #(C1) = = − 1 | )1 = C1}

=
Pr{C2 < )2 < C2 + 3C2, #(C) − #(C1) = = − 1}

Pr{#(C) − #(C1) = = − 1}

=
Pr{#[C1, C2, C2 + 3C2, C] = [0, 1, = − 2]}

Pr{#(C) − #(C1) = = − 1}

=

4−�(C−C1)(� 3C2)
(
(�(C−C2))=−2

(=−2)!

)
4−�(C−C1) (�(C−C1))

=−1

(=−1)!

=
= − 1
C − C1

(
1 − C2 − C1

C − C1

)=−2
3C2

�

From the above examples, we see that for )1 is uniformly distributed in [0, C] given
#(C) = 1. If it is given that #(C) ≥ 2, then the first arrival time )1 is not uniformly
distributed in [0, C].

Exercise 1. A couple of exercises for the reader:

21



DE13 Poisson point process

1. Show that
5)1 |#(C)(B | #(C) = 0) = �4−�(B−C) for B ≥ C

and it is zero elsewhere.

2. Show that for = > 0,
E()1 | #(C) = =) =

C

= + 1 .

3. Compute
E()1 | #(C) = 0).

4. Compute E()2 | )1, #(C)).

Supposing we knew that #(C) = =, then what is the distribution of the arrival times
)1, )2, . . . , )=? The answer is interesting.

Theorem 4.9. The conditional pdf of interarrival times )1, )2, . . . , )= given #(C) = = is
given by: For 0 < C1 < C2 < . . . < C= < C

5 (C1, C2, . . . , C= | #(C) = =) =
=!
C=

Elsewhere the pdf is zero. Note the pdf is constant (or uniform) in the region 0 < C1 <

C2 < . . . < C= < C.

Using the techniques shown in the previous examples, this above theorem is easily
proved.

A remarkable property of the Poisson process is that if split the arrivals of a Poisson
process by flipping a biased coin, the two resulting processes are independent Poisson
processes!! I don’t know any other stochastic processes with this property. So if you want
extra credit, then think about classifying all stochastic processes with this property.

Theorem 4.10. Let#(C) be a Poisson processwith rate�, suppose every arrival is labelled 1
with probability ? and 0 with probability 1−?. Suppose this each arrival is independently
labelled. Let #1(C) denote the number of points labelled 1 in [0, C], and #0(C) denote the
number of points labelled 0 in [0, C]. Then #0(C), #1(C) are independent Poisson processes
with rates ?� and (1 − ?)�.

Proof. It is clear that #0(C) + #1(C) = #(C). We will use this fact freely.
Suppose there are totally = arrivals. The probability that : of them are labelled 1 and =− :
are labelled 0 is given by the Binomial distribution:

Pr{#1(C) = :, #0(C) = = − : | #(C) = =} =
(
=

:

)
?:(1 − ?)=−:
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DE13 4.1 Cramer-Lundberg Ruin theory

Pr{#1(C) = :, #0(C) = = − :, #(C) = =}
Pr{#(C) = =} =

(
=

:

)
?:(1 − ?)=−:

Pr{#1(C) = :, #0(C) = = − :}
Pr{#(C) = =} =

(
=

:

)
?:(1 − ?)=−:

Pr{#1(C) = :, #0(C) = = − :} =
(
=

:

)
?:(1 − ?)=−: Pr{#(C) = =}

Pr{#1(C) = :, #0(C) = = − :} =
(

=!
:!(= − :)!

)
?:(1 − ?)=−:

(
4−�C(�C)=

=!

)
Pr{#1(C) = :, #0(C) = = − :} =

(
4−?�C(?�C):

:!

) (
4−(1−?)�C((1 − ?)�C)=−:

(= − :)!

)
Thus for every real C > 0, #0(C), #1(C) are independent random variables and they are
distributed as Poisson(?�) and Poisson((1 − ?)�) respectively. �

Another cool property of Poisson processes is that sum of two independent Poisson
process is a Poisson process with sum of the rates. This will be an exercise problem.

4.1 Cramer-Lundberg Ruin theory

The following section is an selective adaptation of [?] and we advise the reader to refer to
those notes. What follows is a poor imitation of those notes and at times I have shamelessly
lifted a few sentences from those notes.

In a collective risk model there are a number of contracts for risks, like insurance against
thefts, accidents, natural calamities and other adverse events. A companymight be selling
a collection of such contracts and we are interested in avoiding the ruin of the insurance
company.

Assume that the number of claims that appear in the interval [0, C] is denoted by #(C).
The ith claim that appears at time )8 causes a payment of -8 (called the 8th claim size). We
assume that the collection of claim sizes {-8 |8 ∈ Z≥0} are independent random variables
and further, we also assume that the random variables of stochastic process #(C) are
independent of the claim sizes {-8 |8 ∈ Z≥0}.

Let C ≥ 0. The aggregate claim amount paid by the company in the interval [0, C] is
given by

((C) :=
#(C)∑
8=1

-8 .

Expand on this exercise:
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DE13 Continuous time Markov Chains

1. Let A be the fixed interest rate in the market. Define the discounted sum:

(0(C) :=
#(C)∑
8=1

4−A)8-8 .

Explain the meaning of (0(C) and the significance of this quantity.

2. Assume #(C) is a Poisson point process with rate �. If the average claim size is -.
Show that the expectation of (0(C) is

E((0(C)) =
�
A
(1 − 4−AC)-.

3. Let ?(C) denote the premium income in the time interval [0, C] and suppose the
company had an initial capital of u units. Then the company’s capital balance
function is defined as

*(C) = D + ?(C) − ((C).

What is the average value of*(C)?

The first time t such that*(C) < 0 is called the ruin time. Discuss the main theorem of
ruin after introducing martingales?.

※ Continuous time Markov Chains

※ Martingales
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