Assignment 3: Forecasting

DE09: Time Series Analysis, Srikanth Pai, MSE

- 1. Try to write clear proofs for "Show that.." questions. Your proofs must start by stating definitions, followed by a sequence of logical inferences and the conclusion must be at the end.
- 2. For "Give an example...." questions, state the example clearly at the start and then justify why it works afterwards.
- 3. I do not condone using AI tools blindly. Use it to learn intermediate steps and you will be prepared for the exam.Note that the AI based derivations are often erroneous on a conceptual level. So follow the notes from class.

Maths practice

- 1. Find the minimum value of $(x-1)^2 + (y-2)^2 + (z-3)^2 + (w-4)^2$ if x+y+z+w=0 and 2x+3y+4z+w=0. Solve it using the vector space method.
- 2. Define a generating function of a sequence $\{a_t\}$ as a power series

$$A(x) = \sum_{t=0}^{\infty} a_t x^t.$$

If $Y_t = \epsilon_t + 2\epsilon_{t-1}$ and Y(x), E(x) are the generating functions of sequence Y_t, ϵ_t respectively, show that

$$Y(x) = (1+2x)E(x).$$

You may assume $\epsilon_{-1} = 0$.

3. What is Cholesky decomposition? Prove the uniqueness and compute the decomposition for the matrix

1	1	
. 1	4	

Forecasting theory

- 1. Prove that the conditional expectation is the MMSE estimator.
- 2. Using vector space methods, show that if the MMSE estimator \hat{Y} , is a function of the observed data **X**, then

$$\mathbb{E}[\hat{Y}(Y - \hat{Y})] = 0.$$

Note that in vector space parlance, this means optimal forecast error is independent of the optimal forecast.

- 3. For a jointly normal random vector $(Y, X_1, X_2, ..., X_n)$, show that the conditional expectation $\mathbb{E}(Y|\mathbf{X})$ is a linear function of the vector \mathbf{X} .
- 4. Show that if the data for multilinear regression is written in the form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

then prove that the MMSE estimator (assuming ϵ is white noise) is of the form

$$\hat{\beta} = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{y}.$$

- 5. Let $\hat{\mathbf{y}} = H\mathbf{y}$ where $H = \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$.
 - (a) Show that H is symmetric and idempotent. Conclude H(I H) = (I H)H = 0.
 - (b) Show that $y \hat{y}$ is perpendicular to \hat{y} . Again we see that the error due to optimal forecast is perpendicular to the optimal forecast.
- 6. Derive the optimal forecast coefficients for time series data in matrix form as

$$\underline{\alpha} = \mathbb{E}(Y_{t+1}\mathbf{X}_t^T)\mathbb{E}(\mathbf{X}_t\mathbf{X}_t^T)^{-1}$$

[Note: This was done in class and is from Hamilton.]

- 7. Write a note on Wiener-Kolmogorov representation and also indicate when it is used.
- 8. Use the Wiener-Kolmogorov representation and compute the infinite sample s-period ahead forecast for AR(1), MA(1) and ARMA(1, 1) process. [Its worked out in Hamilton.]
- 9. Show that the infinite sample s-period ahead forecast of AR(p) process only depends on p latest values. [This leads to PACF vanishing for AR(p) process after p values.]
- 10. Write the formula for sample autocorrelation $\hat{\rho}_j$ in terms of given data $x_1, x_2, ..., x_n$. Now suppose $\hat{\rho}_1 = 0.3, \hat{\rho}_2 = 0.1, \hat{\rho}_j = 0, j \ge 3$, and the data is assumed to follow AR(2) model

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \epsilon_t$$

Using the Yule-Walker equations, estimate ϕ_1, ϕ_2 .

Problems

- 1. Work out the coefficients of the optimal forecast for a MA(1) process based on the latest two samples. Use the formula from previous problem for the derivation.
- 2. Using Cholesky decomposition, work out the updated linear projection formula. [See Hamilton 4.5.20]
- 3. Find the optimal forecast \hat{Y}_{t+2} in each of the cases where the known data \mathbf{X}_t is also specified.
 - (a) $Y_t = \epsilon_t + 2\epsilon_{t-1}$ where $\mathbf{X}_t = \{..., \epsilon_{t-1}, \epsilon_t\}$ for all t.
 - (b) $Y_t = \epsilon_t + 2\epsilon_{t-1}$ where $\mathbf{X}_t = \{..., \epsilon_{-1}, \epsilon_0\}$ for all t.
 - (c) $Y_t = \epsilon_t + 2\epsilon_{t-1}$ where $\mathbf{X}_t = \{\epsilon_4\}$ for all t.
 - (d) $Y_t = 0.5Y_{t-1} + 2\epsilon_t$ where $\mathbf{X}_t = \{Y_t, Y_{t-1}, ...\}$ for all t.
 - (e) $Y_t = 0.5Y_{t-1} + \epsilon_t + 2\epsilon_{t-1}$ where $\mathbf{X}_t = \{\dots, \epsilon_{t-1}, \epsilon_t\}$ for all t.
- 4. Consider a time series given by

$$Y_t = 1 + \epsilon_t + 0.5\epsilon_{t-2}$$

where $\{\epsilon_t\}$ is white noise with unit variance. Work out the optimal linear forecast $\hat{Y}_{t+2|t,t-1,t-2}$ based on three latest samples.