

Statistics: Internals 2 Supplementary

Srikanth Pai, Asst. Professor, MSE

Duration: 90 minutes **Maximum scorable Marks:** 20

OPEN NOTEBOOK EXAM. PRINT, PHOTOCOPY MATERIALS NOT ALLOWED.

Attempt all questions. Show clear reasoning. Partial credit will be given for significant steps.

1. (1 mark each) Answer briefly. Explanations must be precise, not essay-style.

- (a) Fill in the blanks: Weak law of _____ numbers states that the sample mean of random variables sampled from a distribution converges to the expectation of the distribution, as the number of samples tends to infinity.
- (b) Suppose we sampled 5 numbers x_1, x_2, x_3, x_4, x_5 from $\text{Poisson}(\lambda)$ where λ is unknown. Is the function $\lambda(x_1 + x_2 + x_3 + x_4 + x_5)$ a statistic? Explain.
- (c) Explain the use of the Rao–Blackwell theorem.
- (d) Write down the probability density function of the multivariate normal distribution. You may assume the mean vector is μ and the covariance matrix is Σ .
- (e) A test for a rare disease is 99% accurate. A person tests positive and claims there's a 99% chance they are infected. What's wrong with their claim?

2. (2 marks) Suppose a coin is to be tossed n times for the purpose of estimating p , where $p = P(\text{heads})$. How large must n be to guarantee that the length of the 99% confidence interval for p will be less than 0.02? (You may use $z_{0.995} = 2.5758$.)

3. (2 marks) Use the method of moments to estimate θ in the pdf

$$f_Y(y; \theta) = (\theta^2 + \theta) y^{\theta-1} (1 - y), \quad 0 \leq y \leq 1.$$

Assume that a random sample of size n has been collected. [Hint: If you identify the distribution, you can name it and use any fact relating to it to solve the problem.]

4. (3 marks) Let Y_1, Y_2, \dots, Y_n be a random sample of size n from the pdf

$$f_Y(y; \theta) = \frac{1}{(r-1)!\theta^r} y^{r-1} e^{-y/\theta}, \quad y > 0$$

Show that $\hat{\theta} = \frac{1}{r} \bar{Y}$ is a minimum-variance unbiased estimator for θ .

5. (3 marks) Suppose that Y is a gamma random variable with parameters r and θ , and the prior is also gamma with parameters s and μ . Show that the posterior pdf is gamma with parameters $r+s$ and $y+\mu$.

6. (3 marks) Let Y_1, Y_2, \dots, Y_n be a random sample from a uniform pdf defined over the interval $[0, 1]$. Find the pdf and the expectation of the i -th order statistic $Y_{[i]}$, for a given natural number i between 1 and n .

7. (6 marks) Let X_1, \dots, X_n be i.i.d. samples from a truncated exponential distribution on $[0, 1]$ with pdf

$$f(x; \lambda) = \frac{\lambda e^{-\lambda x}}{1 - e^{-\lambda}}, \quad 0 \leq x \leq 1, \lambda > 0.$$

- (a) Show that $T = \sum_{i=1}^n X_i$ is a sufficient statistic for λ .
- (b) Derive the likelihood equation for the MLE $\hat{\lambda}$ and show that it satisfies an implicit equation in T of the form $T = g(\hat{\lambda})$.
- (c) (Hard) If the sample mean is 0.55, then what is the value of $\hat{\lambda}$?