

Internals-1 Supplementary Statistics for Economists 25-26

Srikanth Pai, Asst. Prof, MSE.

Maximum Marks: 20

Time: 60 minutes

The exam is out of 24 marks and you can score a maximum of 20 marks.

1. (1 mark each) Answer briefly. No justification needed.
 - (a) If I toss a fair coin, what is the probability of seeing heads?
 - (b) If $X \sim \text{Poisson}(\lambda)$, what is $\mathbb{E}[X]$?
 - (c) State the definition of covariance between X and Y .
 - (d) If the probability density function of a random variable is $f_X(x) = e^{-2|x|}$, what is the probability that $X = 0$?
 - (e) If $X \sim \text{Uniform}(0, 1)$ and $Y \sim \text{Uniform}(0, 1)$ are independent, what is $\Pr(X + Y \leq 1/2)$?
2. (4 marks) Consider three trials, each of which is either a success or not. Let X denote the number of successes. Suppose that $\mathbb{E}[X] = 1.5$.
 - (a) What is the largest possible value of $\Pr(X = 3)$?
 - (b) What is the smallest possible value of $\Pr(X = 3)$?
3. (5 marks) Two teams play a series of games; each game is independently won by team A with probability p and by team B with probability $1 - p$. The series ends as soon as one team has won 2 games.

Let X be the number of games won by the loser when the series ends.

 - (a) Construct the sample space of terminating sequences of games and give the probability of each outcome.
 - (b) Define the random variable X on this sample space (explicitly map each terminating sequence to the corresponding value of X).
 - (c) From this, compute the probability mass function of X and then compute $\mathbb{E}[X]$.
4. (3 marks) Let X and Y be random variables with finite expectations. Show that
$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

(You may assume the discrete case with $\Pr(\cdot)$ defined on a countable sample space.)

5. (3 marks) Let X and Y be independent $\text{Uniform}(0, 1)$ random variables. Define $Z = X + Y$.
 - (a) Find $\mathbb{E}[X | Z = z]$ for $0 < z < 2$.

(b) Hence compute $\mathbb{E}[X | Z]$ as a random variable.

6. (4 marks) Let X_1, X_2, \dots, X_n be independent $\text{Exp}(1)$ random variables (exponential with mean 1). Define $M_n = \max\{X_1, \dots, X_n\}$.

- Show that $\Pr(M_n \leq t) = (1 - e^{-t})^n$, $t \geq 0$.
- Deduce that $M_n - \log n$ converges in distribution as $n \rightarrow \infty$, and identify the cdf of the limiting distribution.