Week 10 H.W.

BA2023, Statistics, MSE

- 1. Larsen and Marx 5.2.16, 5.2.20, 5.4.7, 5.4.9, 5.4.11.
- 2. Define the bias of an estimator $\hat{\theta}$ as $\text{Bias}(\hat{\theta}) := \mathbb{E}(\hat{\theta}) \theta$, and the mean squared error of the estimator as

$$MSE(\hat{\theta}) := \mathbb{E}(\hat{\theta} - \theta)^2.$$

- (a) Supposing we have data drawn from a Normal distribution. Which one has lower mean squared error (MSE) among $\hat{\sigma}^2_{MLE}$ and the sample variance?
- (b) Let $X_1, ..., X_n$ be i.i.d. Ber(p). Then what is the mean squared error of the MLE estimate of p?
- (c) Prove

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + \text{Bias}(\hat{\theta})^2$$

- 3. Let $X_1, ..., X_n$ be an i.i.d. sample from the uniform distribution on (-a, a).
 - (a) Find the method of moments estimator $\hat{a_1}$. Is it unbiased?
 - (b) Find the MLE \hat{a}_2 . Is it unbiased?
 - (c) Which estimator among the above two has lower MSE?