MADRAS SCHOOL OF ECONOMICS

UNDERGRADUATE PROGRAMME IN ECONOMICS (HONOURS) [2023-26]

SEMESTER 3 [JULY – NOVEMBER, 2024]

REGULAR END TERM EXAMINATION, NOVEMBER 2024

Course Name: Statistics for Economics, Course Code:CC08

Duration: 2 Hours

Maximum Marks: 60

Instructions: For part A write short answers (most preferably a single word,/single number/single sentence). For part B, writing relevant formulae and quoting correct definitions helps me give you part marks. For the essay question, creative writing is prohibilited. Draw your inferences from established sources like surveys, research journals and textbooks instead of social media, blogs and wikipedia.

Part A: Answer all questions (1 mark x 10 questions = 10 marks)

- 1. State the definition of conditional probability of events.
- 2. If f(x) is the pdf of a random variable, then can there be an x so that f(x) = 2024? Explain.
- 3. If X_1, X_2 i.i.d Bernoulli(1/2) random variables then what is the distribution of $|X_1 X_2|$?
- 4. What is the use of a p-value?
- 5. What is the distribution of $\frac{\overline{Y} \mu}{S/\sqrt{n}}$ if Y_1, Y_2, \dots, Y_n are drawn from i.i.d Normal (μ, σ^2) ?
- 6. If $F_{X,Y}(x,y)$ is the cdf of two random variables where X and Y are exponential(λ) distributed, but not independent, then what is the value of $\lim_{x \to 0} (1 F_{X,Y}(x,y))$?
- 7. State Chebyshev inequality precisely.
- 8. I've noticed that taxis drive past Ranjith Road on the average of once every 40 minutes. Which distribution will you use to model the time spent waiting for a taxi?
- 9. Let p be a real number such that $0 \le p \le 1$. What is another name for a Binomial(1, p) distribution?
- 10. If $X \sim \text{Poisson}(\lambda)$, then what is the mean of e^X ?

- 11. Answer part (a) using bullet points and the second subpart should be an essay that is less than 200 words. You will lose marks if the essay is longer than 200 words.
 - (a) [3 marks] Write down all the statistical assumptions of the simple linear model for regression.
 - (b) [7 marks] What are the potential pitfalls of running a regression analysis in economics and finance? Make sure to write precise objections and illustrate actual examples with references.
- 12. You roll a fair dice n times. Let S_n denote the number of ones in n rolls.
 - (a) [2 marks] State the central limit theorem.
 - (b) [2 marks] Argue that S_n is binomially distributed. Compute mean and standard deviation of S_n .
 - (c) [6 marks] Approximate the probability $Pr\{980 \le S_{6000} \le 1020\}$.
- 13. Suppose

$$f_{X,Y}(x,y) = c/2, \ 0 \le x \le 2, 0 \le y \le 1.$$

and 0 elsewhere.

- (a) [2 marks] Given that the function $f_{X,Y}$ is a joint density function, what is the value of c?
- (b) [3 marks] Compute and identify the marginal distributions.
- (c) [2 marks] What is the covariance between X and Y?
- (d) [3 marks] Compute the probability $Pr\{X > 2Y\}$.
- 14. Suppose Y_1, Y_2, \dots, Y_n are iid samples from normal distribution with mean μ and known variance σ^2 .
 - (a) [3 marks] Show that the maximum likelihood estimator $\hat{\mu}_n$ is the sample mean.
 - (b) [2 marks] State linearity of expectation and show that $\hat{\mu}_n$ is unbiased.
 - (c) [2 marks] State the weak law of large numbers and show that $\hat{\mu}_n$ is consistent.
 - (d) [2 marks] State the Cramer-Rao bound and show $\hat{\mu}_n$ the most efficient estimator.
- 15. Answer the following questions:
 - (a) [3 marks] A public health survey is being planned in a large metropolitan area for the purpose of estimating the proportion of children, ages zero to fourteen, who are lacking adequate polio immunization. Organizers of the project would like the sample proportion of inadequately immunized children, $\frac{X}{n}$, to have at least a 98% probability of being within 0.05 of the true proportion p. How large should the sample be?
 - (b) [3 marks] Revenues reported last week from nine boutiques franchised by an international clothier averaged \$59,540 with a standard deviation of \$6860. Based on those figures, in what range might the company expect to find the average revenue of all of its boutiques?
 - (c) [4 marks] A sample of size 1 from the $pdf_Y(y) = (1 + \theta)y^{\theta}, 0 \le y \le 1$, is to be the basis for testing

$$H_0: \theta = 1$$
 versus

 $H_1: \theta < 1.$

The critical region will be the interval $y \leq \frac{1}{2}$.

- i. Find an expression for 1β as a function of θ .
- ii. What is the *p*-value for the observation y = 1/8.

- 16. Answer the following questions:
 - (a) [4 marks] Show that uncorrelated Bernoulli random variables are independent.
 - (b) [2 marks] Compute the mean of the chi-squared random variable from the moment generating function.
 - (c) [4 marks] Portfolio turnover expresses the past year's trading activity as a percentage of an account's average assets. The following table summarizes the performances of one hundred mutual funds cross-classified according to portfolio turnover and annual return. Test the independence assumption for $\alpha = 0.05$.

	Annual returns $\leq 10\%$	Annual returns $> 10\%$
Portfolio turnover $\geq 100\%$	11	10
Portfolio turnover $< 100\%$	55	24

17. The relationship between school funding and student performance continues to be a hotly debated political and philosophical issue. The data available is shown in Figure 1, showing the per-pupil expenditures and graduation rate for 26 randomly chosen districts in Massachusetts. Use the following values:

$$\sum_{i=1}^{26} x_i = 360, \sum_{i=1}^{26} y_i = 2256.6, \sum_{i=1}^{26} x_i^2 = 5365.08, \sum_{i=1}^{26} x_i y_i = 31402,$$

- (a) [3 marks] Compute sample means, sample variance of x and sample covariance.
- (b) [2 marks] Use the OLS minimization criteria to find the optimal slope b and the intercept a.
- (c) [2 marks] Suppose s = 11.78848 where s is the unbiased estimator of variance. Estimate the slope with 95% confidence level under the usual assumptions of simple linear model.
- (d) [3 marks] What does your answer to previous part imply about the outcome of testing $H_0: b = 0$ versus $H_1: b \neq 0$ at the $\alpha = 0.05$ level of significance? How would you summarize these data, and their implications, to a meeting of the state School Board?

District	Spending per Pupil (in 1000s), x	Graduation Rate
	(,	Graduation Rate
Dighton-Rehoboth	\$10.0	88.7
Duxbury	\$10.2	93.2
Tyngsborough	\$10.2	95.1
Lynnfield	\$10.3	94.0
Southwick-Tolland	\$10.3	88.3
Clinton	\$10.8	89.9
Athol-Royalston	\$11.0	67.7
Tantasqua	\$11.0	90.2
Ayer	\$11.2	95.5
Adams-Cheshire	\$11.6	75.2
Danvers	\$12.1	84.6
Lee	\$12.3	85.0
Needham	\$12.6	94.8
New Bedford	\$12.7	56.1
Springfield	\$12.9	54.4
Manchester Essex	\$13.0	97.9
Dedham	\$13.9	83.0
Lexington	\$14.5	94.0
Chatham	\$14.7	91.4
Newton	\$15.5	94.2
Blackstone Valley	\$16.4	97.2
Concord Carlisle	\$17.5	94.4
Pathfinder	\$18.1	78.6
Nantucket	\$20.8	87.6
Essex	\$22.4	93.3
Provincetown	\$24.0	92.3

Source: profiles.doe.mass.edu/state-report/ppx.aspx.

Figure 1: Graduation rate and spending per pupil

 Table A.I
 Cumulative Areas under the Standard Normal Distribution

					0	z				
<i>z</i>	0	1	2	3	4	5	6	7	8	9
-3.	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0238	0.0233
-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0300	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0570	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2297	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

(cont.)

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Table A.1 Cumulative Areas under the Standard Normal Distribution (cont.)

Source: From Samuels/Witmer, *Statistics for Life Sciences*, Table 3, p. 675, © 2003 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc.

Table A.2 Upper Percentiles of Student *t* Distributions

α									
df	0.20	0.15	0.10	0.05	0.025	0.01	0.005		
1	1.376	1.963	3.078	6.3138	12.706	31.821	63.657		
2	1.061	1.386	1.886	2.9200	4.3027	6.965	9.9248		
3	0.978	1.250	1.638	2.3534	3.1825	4.541	5.8409		
4	0.941	1.190	1.533	2.1318	2.7764	3.747	4.6041		
5	0.920	1.156	1.476	2.0150	2.5706	3.365	4.0321		
6	0.906	1.134	1.440	1.9432	2.4469	3.143	3.7074		
7	0.896	1.119	1.415	1.8946	2.3646	2.998	3.4995		
8	0.889	1.108	1.397	1.8595	2.3060	2.896	3.3554		
9	0.883	1.100	1.383	1.8331	2.2622	2.821	3.2498		
10	0.879	1.093	1.372	1.8125	2.2281	2.764	3.1693		
11	0.876	1.088	1.363	1.7959	2.2010	2.718	3.1058		
12	0.873	1.083	1.356	1.7823	2.1788	2.681	3.0545		
13	0.870	1.079	1.350	1.7709	2.1604	2.650	3.0123		
14	0.868	1.076	1.345	1.7613	2.1448	2.624	2.9768		
15	0.866	1.074	1.341	1.7530	2.1315	2.602	2.9467		
16	0.865	1.071	1.337	1.7459	2.1199	2.583	2.9208		
17	0.863	1.069	1.333	1.7396	2.1098	2.567	2.8982		
18	0.862	1.067	1.330	1.7341	2.1009	2.552	2.8784		
19	0.861	1.066	1.328	1.7291	2.0930	2.539	2.8609		
20	0.860	1.064	1.325	1.7247	2.0860	2.528	2.8453		
21	0.859	1.063	1.323	1.7207	2.0796	2.518	2.8314		
22	0.858	1.061	1.321	1.7171	2.0739	2.508	2.8188		
23	0.858	1.060	1.319	1.7139	2.0687	2.500	2.8073		
24	0.857	1.059	1.318	1.7109	2.0639	2.492	2.7969		
25	0.856	1.058	1.316	1.7081	2.0595	2.485	2.7874		
26	0.856	1.058	1.315	1.7056	2.0555	2.479	2.7787		
27	0.855	1.057	1.314	1.7033	2.0518	2.473	2.7707		
28	0.855	1.056	1.313	1.7011	2.0484	2.467	2.7633		
29	0.854	1.055	1.311	1.6991	2.0452	2.462	2.7564		
30	0.854	1.055	1.310	1.6973	2.0423	2.457	2.7500		
31	0.8535	1.0541	1.3095	1.6955	2.0395	2.453	2.7441		
32	0.8531	1.0536	1.3086	1.6939	2.0370	2.449	2.7385		
33	0.8527	1.0531	1.3078	1.6924	2.0345	2.445	2.7333		
34	0.8524	1.0526	1.3070	1.6909	2.0323	2.441	2.7284		

(cont.)

α									
df	0.20	0.15	0.10	0.05	0.025	0.01	0.005		
35	0.8521	1.0521	1.3062	1 6896	2 0301	2 138	2 7220		
36	0.8518	1.0516	1.3055	1 6883	2.0301	2.430	2.7239		
37	0.8515	1.0512	1 3049	1 6871	2.0261	2.434	2.7195		
38	0.8512	1.0508	1 3042	1.6860	2.0202	2.431	2.7155		
39	0.8510	1.0504	1 3037	1 6849	2.0244	2.420	2.7110		
10	0.0507	1.0001	1.5057	1.0049	2.0227	2.420	2.7079		
40	0.8507	1.0501	1.3031	1.6839	2.0211	2.423	2.7045		
41	0.8505	1.0498	1.3026	1.6829	2.0196	2.421	2.7012		
42	0.8503	1.0494	1.3020	1.6820	2.0181	2.418	2.6981		
43	0.8501	1.0491	1.3016	1.6811	2.0167	2.416	2.6952		
44	0.8499	1.0488	1.3011	1.6802	2.0154	2.414	2.6923		
45	0.8497	1.0485	1.3007	1.6794	2.0141	2.412	2.6896		
46	0.8495	1.0483	1.3002	1.6787	2.0129	2.410	2.6870		
47	0.8494	1.0480	1.2998	1.6779	2.0118	2.408	2.6846		
48	0.8492	1.0478	1.2994	1.6772	2.0106	2.406	2.6822		
49	0.8490	1.0476	1.2991	1.6766	2.0096	2.405	2.6800		
50	0.8489	1.0473	1.2987	1.6759	2.0086	2.403	2.6778		
51	0.8448	1.0471	1.2984	1.6753	2.0077	2.402	2.6758		
52	0.8486	1.0469	1.2981	1.6747	2.0067	2.400	2.6738		
53	0.8485	1.0467	1.2978	1.6742	2.0058	2.399	2.6719		
54	0.8484	1.0465	1.2975	1.6736	2.0049	2.397	2.6700		
55	0.8483	1.0463	1.2972	1.6731	2.0041	2.396	2.6683		
56	0.8481	1.0461	1.2969	1.6725	2.0033	2.395	2.6666		
57	0.8480	1.0460	1.2967	1.6721	2.0025	2.393	2.6650		
58	0.8479	1.0458	1.2964	1.6716	2.0017	2.392	2.6633		
59	0.8478	1.0457	1.2962	1.6712	2.0010	2.391	2.6618		
60	0.8477	1.0455	1.2959	1.6707	2.0003	2.390	2.6603		
61	0.8476	1.0454	1.2957	1.6703	1.9997	2.389	2.6590		
62	0.8475	1.0452	1.2954	1.6698	1.9990	2.388	2.6576		
63	0.8474	1.0451	1.2952	1.6694	1.9984	2.387	2.6563		
64	0.8473	1.0449	1.2950	1.6690	1.9977	2.386	2.6549		
65	0.8472	1.0448	1.2948	1.6687	1.9972	2.385	2.6537		
66	0.8471	1.0447	1.2945	1.6683	1.9966	2.384	2.6525		
67	0.8471	1.0446	1.2944	1.6680	1.9961	2.383	2.6513		
68	0.8470	1.0444	1.2942	1.6676	1.9955	2.382	2.6501		
69	0.8469	1.0443	1.2940	1.6673	1.9950	2.381	2.6491		
70	0.8468	1.0442	1.2938	1.6669	1.9945	2.381	2.6480		
71	0.8468	1.0441	1.2936	1.6666	1.9940	2.380	2.6470		
72	0.8467	1.0440	1.2934	1.6663	1.9935	2.379	2 6459		
73	0.8466	1.0439	1.2933	1.6660	1.9931	2.378	2.6450		
74	0.8465	1.0438	1.2931	1.6657	1.9926	2.378	2.6640		
75	0.8465	1.0437	1.2930	1.6655	1.9922	2.377	2.6431		
76	0.8464	1.0436	1.2928	1.6652	1.9917	2.376	2.6421		
77	0.8464	1.0435	1.2927	1.6649	1.9913	2.376	2.6413		
78	0.8463	1.0434	1.2925	1.6646	1.9909	2.375	2.6406		
79	0.8463	1.0433	1.2924	1.6644	1.9905	2.374	2.6396		
						ST 10 1970 1970 1970 1970			

Table A.2 Upper Percentiles of Student t Distributions (cont.)

Table A.3 Upper and Lower Percentiles of χ^2 Distributions

df	0.010	0.025	0.050	0.10	0.90	0.95	0.975	0.99
1	0.000157	0.000982	0.00393	0.0158	2.706	3.841	5.024	6.635
2	0.0201	0.0506	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.336	26.217
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932
22	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289
23	10.196	11.688	13.091	14.848	32.007	35.172	38.076	41.638
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642
27	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278
29	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588
30	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892
31	15.655	17.539	19.281	21.434	41.422	44.985	48.232	52.191
32	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486
33	17.073	19.047	20.867	23.110	43.745	47.400	50.725	54.776
34	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061