PROBLEM SET - 1

1. MATHEMATICAL INDUCTION

- (1) Prove that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$ for all positive integers n.
- (2) Prove that $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers n.
- (3) Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ for all positive integers n.
- (4) Guess a formula for $1 + 3 + 5 + \cdots + (2n 1)$ and prove it by induction.
- (5) Prove that $11^n 4^n$ is divisible by 7 when n is a positive integer.

2. Real number system

- (6) Prove that $\sqrt{3}$ is not a rational number (try proving without using the theorem about rational roots).
- (7) Prove that $\sqrt{2+\sqrt{2}}$ is not a rational number.
- (8) Show that $\sqrt{\frac{4-2\sqrt{3}}{7}}$ is not a rational number.
- (9) Show that $\sqrt{4+2\sqrt{3}}-\sqrt{3}$ is actually a rational number.
- (10) Show that there is no rational number r such that $2^r = 3$.
- (11) Are the following sets bounded above / below? What is the supremum and infimum in each case? Justify your statements.

 - (a) $\bigcap_{n=1}^{\infty} \left[-\frac{1}{n}, 1 + \frac{1}{n}\right]$ (b) $\bigcap_{n=1}^{\infty} \left(1 \frac{1}{n}, 1 + \frac{1}{n}\right)$ (c) $\left\{\sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N}\right\}$ (d) $\left\{x \in \mathbb{R} : x^3 < 8\right\}$ (e) $\left\{\frac{m}{n} : m, n \in \mathbb{N}, m < n\right\}$
- (12) Let S be a non-empty bounded subset of \mathbb{R} . Prove that $\inf S \leq \sup S$.
- (13) Let S and T be a non-empty bounded subsets of \mathbb{R} . Let $S \subseteq T$. Prove that $\inf T \le \inf S \le \sup S \le \sup T.$
- (14) Let S and T be non-empty bounded subset of \mathbb{R} . Prove that $\sup(S \cup T) =$ $\max\{\sup S, \sup T\}.$
- (15) Let $a, b \in \mathbb{R}$ with a < b. Show that there are infinitely many rationals between a and b.
- (16) Let $a, b \in \mathbb{R}$. Suppose $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then show that $a \leq b$.
- (17) Let $a, b \in \mathbb{R}$ with a < b. Consider the set $T = [a, b] \cap \mathbb{Q}$. What is the supremum of T? Prove it.

PROBLEM SET - 1

3. Functions

- (18) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Find f(A), f(B), $f(A \cap B)$, $f(A) \cap f(B)$, $f(A \cup B)$ and $f(A) \cup f(B)$ where A and B are the closed intervals A = [0, 2] and B = [1, 4]. Find two sets A, B where $f(A \cap B) \neq f(A) \cap f(B)$.
- (19) Let $f(x) = \log(x)$ for $x \in (0, \infty)$. What is the range of f? Let A = [0, 1] and B = [1, 2]. Find $f^{-1}(A)$, $f^{-1}(B)$ and $f^{-1}(A \cap B)$.
- (20) Let $f(x) = \sin(x)$ for $x \in (-\infty, \infty)$. (a) What is $f^{-1}(1)$? (b) Find $f([0, \pi/6]), f([\pi/6, \pi/2]), f([0, \pi/2])$ and $f([5\pi/6, \pi])$.
- (21) Let $f : \mathbb{R} \to \mathbb{R}^2$ be given by $f(x) = (\cos(x), \sin(x))$. What is the range of f?
- (22) Let $A = \{1, 2, \dots, n\}$ and $B = \{0, 1\}$. How many functions are there which map A to B? How many of these are onto functions?