REAL ANALYSIS - INTERNAL ASSESMENT - 1

- (1) Check whether the following sets are finite / countable / uncountable. If the set is finite, list out the elements of the set and state its cardinality. If the set is countable (or uncountable), then exhibit a bijection with \mathbb{N} (or the interval (0, 1)) respectively.
 - (a) A = (-2, 2), the open interval in \mathbb{R} .
 - (b) $B = \{ \sin \frac{\pi x}{10} : x \in \mathbb{N} \}.$
 - (c) $C = \{(x, y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}.$

(2+1+2=5 marks)

- (2) (a) Let (X, d) be a metric space and E be a subset of X. Define limit point of E.
 (b) If x is a limit point of E, prove that every neighbourhood of x has infinitely many points of E.
 - (c) What are the limit points of the subset $\{\frac{1}{n} : n = 1, 2, \dots, 10\}$ of \mathbb{R} with the usual metric? (1+3+1=5 marks)
- (3) Consider the set $T = [1, \sqrt{2}] \cap \mathbb{Q}$. What is the supremum of T? Prove it. (2 marks)
- (4) Identify x-axis in \mathbb{R}^2 with the real line \mathbb{R} . Show that x-axis with the usual metric on \mathbb{R} is a submetric space of \mathbb{R}^2 with the usual metric. (1 mark)
- (5) Consider the subset $X = \{(x, y) \in \mathbb{R}^2 : y < 1\}$ of \mathbb{R}^2 with the usual metric. Check whether the following statements are true or false and justify.
 - (a) The limit points of X is the set $\{y = 1\}$.
 - (b) The interior points of the set are $\{(x, y) \in \mathbb{R}^2 : y < 1\}$.
 - (c) The set $X \cap \mathbb{R}$ is an open subset of \mathbb{R} .

(2+3+2=7 marks)