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Abstract

A small number of firms competing to sell a product to a market constitutes
an oligopoly. The firms control the market share by setting the price or controlling
quantities. The game-theoretic study of this setting is well studied in economics.
Collusion refers to firms sustaining prices above standard equilibrium benchmarks
by responding to unilateral price cuts with actions that make deviation unprofitable.
In recent years, with the advent of AI and the associated popularity of reinforce-
ment learning (RL), pricing in oligopolies has been studied using these techniques.
We integrate insights from both economic modeling and machine learning to clarify
when and why algorithmic pricing yields supracompetitive outcomes. The paper re-
views foundational economic models and the RL agent literature from recent times.
We argue that the existence, convergence, and proper identification of collusion in
settings with RL agents are far from settled.

1 Introduction and Motivation

Algorithmic pricing tools are increasingly deployed in digital markets, where sellers adjust
prices frequently in response to competitors and demand conditions. Empirical studies of
large e-commerce platforms, such as Amazon Marketplace, document that a substantial
share of third-party sellers rely on automated pricing software rather than manual price-
setting (Chen et al., 2016; Spann et al., 2025). In parallel, both economists and machine-
learning researchers have begun to model these tools using reinforcement learning (RL),
treating pricing as a sequential decision problem in which agents update prices based
on realised profits and observed rival behaviour (Waltman and Kaymak, 2008; Calvano
et al., 2020; Klein, 2021).

Recent years have witnessed remarkable progress in reinforcement learning (RL),
achieving superhuman performance in complex sequential decision-making domains such
as board games (Silver et al., 2016, 2017), real-time strategy environments (Vinyals et al.,
2019; Ye et al., 2020), robotic control (Lillicrap et al., 2016; Haarnoja et al., 2018), and
autonomous driving (Kendall et al., 2018; Codevilla et al., 2018). Much of this progress
stems from the integration of deep neural networks as function approximators (Mnih
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et al., 2015b; LeCun et al., 2015), enabling RL agents to operate in high-dimensional
state and action spaces.

A significant fraction of these advances involve interaction among multiple adaptive
agents, giving rise to the field of multi-agent reinforcement learning (MARL) (Busoniu
et al., 2008; Hernandez-Leal et al., 2019; Zhang et al., 2021). In MARL, each agent op-
timizes its long-run reward in an environment influenced by the actions of others, often
leading to emergent coordination, competition, or instability. Although this framework
mirrors the strategic interactions long studied in economics, it is more popular in dis-
tributed control and robotics problems.

In economic theory, many markets are neither perfectly competitive nor fully mo-
nopolistic but instead consist of a few dominant firms whose actions are interdependent.
Such markets are known as oligopolies. Each firm’s optimal price or production decision
depends on its expectations of how rivals will respond. Classical models formalize this
dependence: the Cournot model treats firms as choosing quantities, the Bertrand model
treats them as choosing prices, and the Edgeworth model introduces capacity constraints.
These benchmark settings define the competitive landscape against which coordination
or collusion can be understood.

Under full information and rational behaviour, the equilibria of these models are typ-
ically competitive: firms undercut each other until prices approach marginal cost. Sus-
tained collusion—explicit or tacit—requires repeated interaction, credible punishment,
and common knowledge of rationality (Fudenberg and Tirole, 1991; Tirole, 1988). These
assumptions have guided antitrust reasoning for decades and underlie the belief that
collusion cannot arise without communication or enforcement mechanisms.

Although interest in “algorithmic collusion” has grown rapidly, the term is often used
loosely in the machine-learning literature to refer to any outcome with prices above the
competitive benchmark. In economic theory, however, collusion has a far stricter meaning:
firms must condition their behaviour on past actions and deter profitable deviations
through credible punishment strategies (Stigler, 1964; Green and Porter, 1984; ?). High
prices alone are not sufficient. A central aim of this survey is to clarify this distinction and
to evaluate existing RL results using the repeated-game notion of tacit collusion, which is
the definition relevant for both economic theory and antitrust policy (Harrington, 2018).
Making this distinction early is crucial, because many behaviours that look like collusion
at the level of prices may instead arise from instability, optimisation failures, or artefacts
of the learning algorithms themselves (Asker et al., 2022; Epivent and Lambin, 2024).

The existing RL literature on oligopoly pricing reflects this definitional ambiguity. In
practice, learning agents display a wide range of behaviours: some converge to compet-
itive prices, others oscillate, and some maintain elevated prices for long periods (Klein,
2021; Hettich, 2021; Dawid et al., 2024). These patterns must be interpreted with care,
because high prices or cycles alone do not reveal whether the underlying policies imple-
ment the history-dependent incentives required for tacit collusion. For ML researchers,
the key challenge is determining when observed outcomes reflect strategic interaction
and when they arise from optimisation issues or artefacts of specific learning rules—such
as asynchronous updating, temporal randomisation through replay buffers, or function
approximation instability (Asker et al., 2022; Epivent and Lambin, 2024; ?).

A recent survey by Abada et al. (2025) provides a comprehensive overview of al-
gorithmic collusion, with emphasis on defining collusion outcomes, empirical relevance,
and regulatory implications. Whereas their contribution is largely economic and policy-
focused, our critique is more technical: we examine the specific reinforcement-learning al-
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gorithms used in oligopoly pricing studies—tabular Q-learning, deep Q-networks, policy-
gradient methods, and implementation details such as replay, synchronisation, and state
design—and assess whether the behaviours reported in the literature satisfy the repeated-
game notion of tacit collusion rather than arising from optimisation artifacts or instability.

We examine how different reinforcement-learning approaches behave in repeated pric-
ing environments, how their design choices shape the dynamics they produce, and when
the resulting behaviour should be interpreted as genuine strategic collusion in the eco-
nomic sense. Equally important, we identify cases where elevated prices or apparent coor-
dination arise from optimisation instability, exploration effects, or function-approximation
artefacts rather than from history-dependent incentives. Our aim is to provide a clear
framework for understanding what current RL models can and cannot tell us about tacit
collusion in oligopolies, and to highlight the mechanisms that matter for future research
at the intersection of economics and machine learning.

2 From Reinforcement Learning to Deep Reinforce-

ment Learning

Agent Environment (st → st+1)
Action (at)

Observation (st+1)
Reward (rt)

Figure 1: An agent interacts with an environment through actions. This internally causes
the environment to change states. A local feedback is provided to the agent in terms of
a reward and the next state. The agent picks the next action by taking the next state
and the current reward into consideration.

Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) that deals
with automating the sequential decision making task. It is closely linked to the fields of
Stochastic Control and Dynamic Programming Bertsekas (2012); Bertsekas et al. (2011);
Sutton and Barto (2018). The core idea is succinctly illustrated in Figure 1. An agent
is tasked with finding a strategy to take decisions over time in lieu of solving a given
sequential decision making problem. At any time t, the decision at affects the environment
in which the agents operate. The environment state st changes to st+1. It then provides
a feedback in the form of a reward rt. The agent then refines its decision in the next
step using (rt, st+1). The goal of the agent, in RL, is to continuously interact with the
environment and use the feedback to find a decision strategy that maximizes the future
cumulative discounted rewards. In particular, find π∗ such that

π∗ = argmax E

[∑
t≥0

γtr(st, π(st))

]
π

, (1)
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where the expectation is taken with respect to the state transition kernel; 0 ≤ γ ≤ 1
is the discount factor; suppose that we represent the set of environment states as S and
we use A to represent the set of all possible actions then π : S → A represents the policy
(decision map) that can be used by the agent to take a decision in a given (environment)
state.

Typically in RL one is interested in time-homogeneous policies as in (1). In other
words, one does not seek policies that vary with time. A policy π can be associated with
two key functions: (a) value function (b) Q-function. The value function associated with

π is given by V π(s) = E
[∑
t≥0

γtr(st, π(st)) | s0 = s

]
. Again, the expectation is taken with

respect to the state transition kernel and the state state is fixed to be s. The optimal
policy that maximizes the total discounted rewards is given by

π∗ = argmax
π

V π. (2)

Similarly, the Q-function associated with π is given by

Qπ(s, a) = r(s, a) + γEs′∼P (s,a)V
π(s′), (3)

where s′ is the next state given that action a was taken in state s. The mathematical
framework underlying RL is the Markov Decision Process (MDP). It is defined using
the five tuple ⟨S,A, r,P , γ⟩ , where S is the environment state space, A is the set of all
possible actions, r : S ×A → R is the reward function, P : S ×A → P(S ×A) such that
P(S × A) is the space of all probability distributions over S × A, and 0 ≤ γ ≤ 1 is the
discount factor.

Let us use Q∗ to represent the optimal Q-function Qπ∗
, and V ∗ to represent the

optimal value function V π∗
. The following relation between these two quantities, called

the Bellman equation is central to RL

Q∗(s, a) = r(s, a) + γEs′∼P (s,a)V
∗(s′). (4)

Further, V ∗(s′) = max
a∈A

Q(s′, a) and π∗(s) = argmax
a∈A

Q∗(s, a). Hence, the problem of

finding an optimal policy reduces to finding the optimal Q-function.
** Before introducing deep Q-learning, it is helpful to recall the classical tabular

Q-learning algorithm. In the single-agent setting, Q-learning estimates the optimal Q-
function by iteratively updating its current approximation toward the Bellman target.
After observing a transition (s, a, r, s′), the agent performs

Qt+1(s, a) = Qt(s, a) + αt

[
r + γmax

a′∈A
Qt(s

′, a′)−Qt(s, a)

]
, (5)

where αt is the learning rate. This stochastic approximation procedure converges
to Q∗ under standard assumptions when the state–action space is finite (reference?).
However, Q-learning becomes computationally infeasible in high-dimensional or contin-
uous environments, motivating the use of function approximation through deep neural
networks. **

Deep Q-Learning (DQL) Mnih et al. (2015a) is a very popular algorithm that uses
a Deep Neural Network (DNN) called a Deep Q-Network (DQN) to approximate the
optimal Q-function Q∗. Although simple, DQL is highly effective and does not succumb
to Bellman’s curse of dimensionality. One may argue that DQL is sufficient to solve a
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multitude of discounted reward scenarios with discrete finite action spaces. The DQN
is trained to minimize a loss derived from the Bellman equation (4) called the squared
Bellman loss given by(

Q∗(s, a; θ)− r(s, a)− γ max
a′∈A

Q(s′, a′; θ)

)2

, (6)

where θ represents the vector of DQN weights. The rest of the terms are as defined
before. The goal, therefore, in DQL is to find θ∗ that minimizes the above Bellman loss
(6). This algorithm works very well for scenarios where the action space is discrete and
finite. There are many problems, common in classical control, wherein the action space
is continuous. Lillicrap et al. (2015) developed the Deep Deterministic Policy Gradient
(DDPG) algorithm to address this issue. The algorithm was based on older results
such as Maei et al. (2010) which explored the possibility of searching a parameterized
policy space, guided by the objective to maximize the Q-function. In DDPG, an actor
(policy neural network) iteratively refines its policy through constant feedback from a
critic (DQN). Another policy algorithm that is based on searching the policy space is
Proximal Policy Optimization (PPO), developed by Schulman et al. (2017). The primary
difference between DDPG and PPO lies is the data used to train the policy network.
While DDPG can learn from past experiences (data), PPO collects experiences using the
current policy and then uses them to refine it. Algorithms like DDPG that can learn from
past experiences are called as off-policy algorithms. On-policy algorithms are the ones
that learn only from feedback obtained for current policy. The theory surrounding the
asymptotic behavior of DQL has been studied in Ramaswamy and Hüllermeier (2021).
There are many papers that have studied the finite time behavior of the above mentioned
algorithms, such as Xu and Gu (2020); Qiu et al. (2021).

The hitherto discussed algorithms and framework focused on a single adaptive agent.
In this view, any secondary agent is a part of the environment and therefore exhibits fixed
behavior. This can be limiting in true multi-agent systems. The framework of Markov
games expand the purview of MDPs to multi-agent scenarios Littman (1994). A Markov
game is defined by a set of states S, and a collection of n action sets A1, . . . ,An, one for
each agent. The state transitions are controlled by a transition kernel P : S ×A1 × . . .×
An → P(S). Every agent i has an associated reward function Ri : S×A1× . . .×An → R.

This agent tries to maximize E
[

∞∑
t=0

γtri,t

]
, where ri,t is the single-stage reward obtained

by agent i at time t. The Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
developed by Lowe et al. (2017) is a popular multi-agent RL algorithm. The reader is
referred to Yu et al. (2022); Redder et al. (2022); Zhang et al. (2021) for more details on
multi-agent RL algorithms.

The remainder of the paper is organised as follows. Section 2 provides a concise
overview of reinforcement learning methods relevant to pricing, with emphasis on the dis-
tinction between tabular and deep implementations and how these choices affect learning
dynamics. Section 3 revisits standard oligopoly models (Bertrand, Cournot, and their dy-
namic extensions), which define the competitive and collusive benchmarks against which
learning outcomes must be interpreted. Section 4 sets up repeated and dynamic inter-
action in oligopolies and explains how multi-agent reinforcement learning fits into this
framework. Section 5 synthesises the RL-based pricing literature, evaluating when the
reported behaviours satisfy the repeated-game notion of tacit collusion and when they
are better understood as artefacts of particular algorithms or implementation choices. A
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summary of published studies is presented in Table 5.

3 Classical Models of Oligopoly and Dynamic Pric-

ing

Every firm ideally wants to be a monopoly, that is, sell their goods to the entire market.
An oligopoly is a market with a small number of firms whose decisions are interdependent:
each firm’s optimal action depends on how its rivals are expected to respond. Firms can
compete on prices, as in the Bertrand (1883) model, on quantities, as in Cournot (1838),
or through product differentiation, as in Hotelling’s (1929) framework. These canonical
models are summarized briefly below. For more details, please look at Tirole (1988);
Mas-Colell et al. (1995).

3.1 Single shot Cournot Model

In the Cournot setup, we assume there are N firms competing to sell a single product and
the consumers are indifferent to the companies producing the good. Each firm chooses
the amount of quantity of goods to produce denoted by qi ≥ 0. The action profile is
q⃗ = (q1, . . . , qN), and total output is

Q =
N∑
j=1

qj.

The market price is determined by an inverse demand function P (Q), which is strictly
decreasing. Firm i incurs cost Ci(qi), which is usually assumed to be differentiable and
convex. The profit (reward) to firm i is

ri(q⃗) = qi P (Q)− Ci(qi).

A Cournot–Nash equilibrium is the output profile in which each firm selects the quan-
tity that maximizes its profit, taking the quantities of all other firms as given. From a
reinforcement learning viewpoint, this is a single-state, continuous-action game in which
each agent’s reward depends on the aggregate choice Q.

3.2 Single shot Bertrand Model

In the Bertrand setup, firms choose prices instead of quantities. Each agent i selects a
price pi ≥ 0, forming the price profile p⃗ = (p1, . . . , pN). Demand for firm i is given by a
function Di(pi, p−i), which represents the quantities demanded by consumers across firms
based on the price profile. With marginal cost ci, the payoff to agent i is

ri(p⃗) = (pi − ci)Di(pi, p−i).

A Bertrand–Nash equilibrium is a price vector in which each firm sets the price that
maximizes its profit, taking the prices of all other firms as given. From a reinforcement-
learning viewpoint, this is a single-state, continuous-action game where rewards depend
on how prices jointly shape demand.
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A widely used specification for the demand function Di is the logit demand model
(Anderson et al., 1992):

Di(p⃗) =
exp((ai − pi)/µ)

1 +
∑N

j=1 exp((aj − pj)/µ)
,

where µ > 0 is a constant.

4 Repeated and Dynamic Interaction for Oligopolies

We now discuss market evolution over time. Firms repeatedly observe competitors ac-
tions, update beliefs and adjust their strategies dynamically over time. Firms in dynamic
pricing environments choose actions to maximise the present value of the firm

V = E
[∑

k≥0

γkr(k)
]
,

where r(k) is the payoff of the agent at time k. In the oligopoly literature, discount factor
γ represents the degree of ‘non-myopia’ of the firms. When γ = 0 the firms are said to be
myopic. The expectation appears because future rewards depend on stochastic demands
and, critically, on rivals’ future actions, which appear random from the viewpoint of a
single agent. Thus the dynamic oligopoly problem maps cleanly into a multi-agent RL
setting where each firm learns a policy over a state summarising past prices and market
conditions.

Multi-agent RL in oligopolies raises questions that do not appear in the one-agent
setting. Independent Q-learning, using updates of the form (5), no longer has general
convergence guarantees. Against the benchmark set by the one-shot Nash equilibrium
and the monopoly outcome, three central questions arise:

1. Does the long-run pricing policy converge to the competitive Nash outcome ?

2. What is collusion and do the algorithms employed check for collusive behavior?

3. Is there a way to contain collusion in a digital marketplace by using learning algo-
rithms?

In the remainder of the survey, we examine these questions using the current evidence
from both the economics and machine-learning literature.

5 Emergence of Collusion in Oligopolies with Deep

RL Agents

The notion of collusion is contested in both economics and competition law. Explicit
collusion, understood as an agreement among firms that relies on inter-firm communi-
cation, is unambiguously illegal1. The difficulty lies in detecting tacit collusion, where
firms coordinate purely through repeated actions without communication. Economics
has long studied when repeated interaction allows firms to sustain tacit collusion. A Folk

1Sherman Act in the U.S., Competition Act in India

7



theorem by Fudenberg and Maskin (1986) shows that if the discount factor is sufficiently
high and if firms can observe each other’s behaviour, then many equilibrium outcomes
become self-enforcing. In particular, firms can maintain high prices by rewarding co-
operation and punishing deviations, even though no explicit agreement is made. These
results imply that, in theory, repeated oligopoly environments naturally admit many sta-
ble, history-dependent strategies, so outcome-based definitions of collusion (e.g., “prices
above Nash”) are insufficient when analysing learning algorithms. Thus repeated-game
theory characterizes when tacit collusion can arise as a self-enforcing equilibrium outcome.
What theory does not tell us is whether multi-agent learning dynamics will actually find
such strategies. In the context of machine-learning agents, the conditions under which
specific algorithms discover collusive, history-dependent strategies remain unclear. Prac-
tically, with deep learning algorithms, there is also the possibility that supracompetitive
prices are simply a consequence of optimisation failures arising from time, sample, or
complexity restrictions.

Since supracompetitive prices (above one-shot Nash) are insufficient to define collu-
sion, we need a policy-based perspective. Stigler (1964) argued that the central problem
facing colluding firms is the deterrence of price cuts. In Stigler’s spirit, we follow Harring-
ton (2018) and Calvano et al. (2020) in considering collusion as “a reward–punishment
scheme designed to provide the incentives for firms to consistently price above the com-
petitive level.” Thus collusion cannot be determined by outcomes alone but by the policies
adopted by the firms. A necessary condition is that the strategy employed by a firm is his-
tory dependent. It is therefore of interest to understand whether machine-learning agents
with their fixed, programmed learning rules are capable of producing such strategies.

One of the earliest papers that discusses collusion among multiple Q-learning agents
in an oligopoly problem is Waltman and Kaymak (2008), who examined behaviour in a
Cournot model. They varied the number of firms, the learning rate, the discount factor,
and the memory of previously chosen quantities. Under linear demand and symmetric
costs, average profits were significantly above Cournot–Nash but below monopoly levels
across all settings.

Later, Calvano et al. (2020) were the first to investigate the reward–punishment def-
inition of collusion in a Bertrand logit duopoly with tabular Q-learning agents. They
used bounded memory and simultaneous pricing, and their forced-deviation experiments
show a clear pattern: a price cut triggers a short punishment phase followed by a return
to the supracompetitive price path. Their study was influential because it provided the
first systematic evidence that simple learning dynamics can generate history-dependent
pricing. At the same time, subsequent work raised questions about how to interpret these
findings. Asker et al. (2022) show that asynchronous Q-learning can generate supracom-
petitive prices even in environments where no collusive mechanism is feasible, suggesting
that some of the price elevation may be due to algorithmic structure rather than strate-
gic behaviour. Epivent and Lambin (2024) further show that in the same environment,
tabular Q-learning punishes not only downward deviations but also upward “invitations
to collude,” a pattern inconsistent with any rational collusive strategy and more consis-
tent with learning instability as seen in Figure 2. These critiques concern interpretation
rather than the empirical patterns themselves, but they highlight the need to test whether
observed punishments are genuinely contingent on profitable deviations.

The authors of Calvano et al. (2020) used tabular Q-learning, a foundational yet
simple algorithm. However, it suffers from the curse of dimensionality—the inability
to handle large state spaces. Hettich (2021) extend Calvano et al.’s simultaneous-move
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Figure 2: Reaction of tabular Q-learning agents following forced price deviations, taken
from Epivent and Lambin (2024). In Calvano et al.’s setup, a downward deviation (cut-
ting price) triggers a temporary retaliation phase, after which the high-price path is
restored—consistent with reward–punishment behaviour as shown on the left. The graph
on the right shows that the same Q-learning agents also punish upward deviations, i.e.,
when a firm unilaterally raises its price (“invitation to collude”). As Epivent and Lambin
note, this is a surprising behaviour for colluding firms.

Bertrand duopoly to deep reinforcement learning by replacing tabular Q-learning with a
Deep Q-Network (DQN). They also find that markets with more firms dilute collusion
and that supracompetitive profits essentially disappear once the number of firms reaches
10; cf. Dawid et al. (2024). However, Hettich reports a short-lived price drop following a
forced deviation and interprets this as evidence of a reward–punishment strategy. Unlike
Calvano et al., he does not test whether this reaction is genuinely history dependent,
whether deviations are unprofitable, or whether the behaviour persists over multiple
periods or across different deviation magnitudes.

A related approach is taken by Han (2025), who modifies Q-learning to weight past
experiences according to a firm’s relative performance. This design can generate higher
prices, but the analysis evaluates only final price paths and does not examine devia-
tion responses or any form of punishment behaviour. Consequently, the study identifies
supracompetitive outcomes but does not establish tacit collusion in the repeated-game
sense.

Friedrich et al. (2024) extend Calvano-style Bertrand–Logit pricing to an episodic,
inventory-constrained Markov game and report supra-competitive outcomes for DQN
and PPO agents using a profit-based collusion index; their forced deviation tests, how-
ever, reveal only mild and almost profit-neutral reactions, so the evidence for robust,
history-dependent punishment is considerably weaker than in Calvano et al. and closer
to outcome-based collusion measures than to repeated-game notions of tacit collusion

A natural extension of these environments introduces uncertainty in the observation
of rivals’ actions. In repeated-game theory, imperfect monitoring settings are known to
generate endogenous price wars, as in the classic model of Green and Porter (1984). An
RL-based counterpart of this mechanism is addressed by Calvano et al. (2021), who adapt
Q-learning agents to a Green–Porter-style environment in which demand shocks confound
price deviations. They show that when learning time is sufficiently long, Q-learning agents
internalize the monitoring friction and still achieve supracompetitive outcomes sustained
by finite-duration punishment cycles. In contrast with perfect-monitoring setups, pun-
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ishments do not only follow deliberate deviations but also occur after adverse shocks.
Unlike Calvano et al.’s simultaneous-move setup, Klein (2021) study a setting where

firms update prices one at a time (a sequential repeated game). They show that tabular
Q-learning can produce two kinds of behaviour depending on the coarseness of the price
grid. With a small, discrete set of allowable prices, the algorithms often settle on a
stable supracompetitive price and exhibit clear reward–punishment strategies. When the
price grid is finer, the learning process instead produces repeated downward drift followed
by sharp upward resets, and these cycles keep the average price above the competitive
benchmark.

A separate line of work evaluates how different learning rules and implementation
choices determine long-run pricing outcomes. Deng et al. (2024) compare DQN, PPO,
SAC and related deep RL methods and find that these architectures usually converge
either to competitive prices or to unstable cycles, and none display credible devia-
tion–punishment responses. Studies that report elevated prices without testing devia-
tion responses, such as Schlechtinger (2024), cannot establish tacit collusion since they
document high or oscillatory prices but do not determine whether a unilateral deviation
would be punished. Taken together, the evidence indicates that while tabular Q-learning
can generate genuine history-dependent punishments in restricted environments, the be-
haviour of deep RL agents is typically explained by instability or optimisation artifacts
rather than tacit collusion.

Since it looks plausible that learning agents collude, a natural line of questioning is
whether the rules of the environment can be modified to counteract collusion. Johnson
et al. (2023) show that in digital marketplaces, steering consumer visibility towards firms
that deviate downward can eliminate collusive practices among Q-learning agents, and
that when such steering depends on past pricing histories, supracompetitive equilibria
collapses. Brero et al. (2022) treat the platform as a reinforcement learning agent who
is a Stackelberg leader and learn rules that choose which seller to display based on price
history. In this work, the buyers are Q-learning agents. They demonstrate that this
method is effective in containing collusion compared to steering rules designed by hand.

A summary of peer reviewed papers that discuss RL agents used by firms to set prices
is presented in Table 5.
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Paper Model Move Algo State repr. FD? Punish? Main finding

Waltman and Kaymak
(2008)

C Sim TQL None No No Profits > Nash; no strategic
response

Calvano et al. (2020) BL Sim TQL Past price pairs Yes Yes Clear reward–punishment
equilibrium path

Klein (2021) B Seq TQL Price grid + memory Yes Yes* Collusion only on coarse grid;
cycles otherwise

Han (2025) B Sim WQL Weighted replay No No Higher prices; deviation re-
sponses not tested

Asker et al. (2022) BLv Async TQL None Yes Weak Supracompetitive even when
collusion infeasible

Epivent and Lambin
(2024)

BL Sim TQL Bounded memory Yes Yes† Punishes both upward and
downward deviations

Johnson et al. (2023) BL Sim TQL History window on ri-
vals

Yes Indirect Platform steering collapses
supracompetitive outcomes

Schlechtinger (2024) B Sim DQN/PPO Own price only No No Supra-competitive prices
even without observing ri-
vals; oscillatory pricing

Friedrich et al. (2024) BL +
inv

Sim DQN/PPO Last prices + invento-
ries

Yes Weak Episodic, inventory-
constrained market;
DQN/PPO reach supra-
competitive prices with
mild, short-lived reactions to
forced deviations

Table 1: Summary of peer-reviewed RL-agent based seller pricing studies.

Model codes: BL = Bertrand–Logit, B = Bertrand, C = Cournot, BLv = variant of Bertrand–Logit.
Move: Sim = simultaneous price updates, Seq = sequential updates, Async = asynchronous updates.
Algorithms: TQL = tabular Q-learning, WQL = weighted Q-learning, DQN = Deep Q-network.
FD? indicates whether a forced-deviation experiment was performed.
Punish? indicates whether deviations were followed by a return to the supracompetitive path.

* Punishment verified only for coarse price grids. † Upward deviations also punished, which contradicts rational collusion.
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6 Conclusion

Current evidence shows that reinforcement-learning agents can generate price trajecto-
ries above static Nash outcomes in small oligopolies. However, these patterns rarely
meet the repeated-game criterion for tacit collusion. Only bounded-memory tabular Q-
learning, under simultaneous moves and explicit forced-deviation tests, exhibits credible
reward–punishment responses, and even those are fragile. In most deep-RL implementa-
tions, elevated prices arise without demonstrable deviation deterrence; when deviations
are induced, responses are weak, symmetric with respect to upward and downward moves,
or collapse quickly.

Our assessment is that the literature substantially over-interprets outcome-level price
elevation as collusion. Collusion claims must instead rest on history-dependent continu-
ation behaviour where deviations reduce discounted value relative to compliance. Very
few studies satisfy this test. Future work should benchmark algorithms against explicit
profitability-based deviation checks, rather than price paths alone, before making claims
of autonomous collusion.
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