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Preface

These notes collect material on stochastic processes relevant to economics, particularly dynamic

programming and recursive methods in macroeconomics. The style is rigorous but oriented toward

applications, with emphasis on motivation, worked examples, and exercises.

The notes contain a lot of remarks pertaining to economic applications or philosophy. These

remarks can be safely skipped without affecting the flow of the chapter. Theorem proofs are usually

restricted to the special case of partition sigma algebras and discrete random variables. The theory

for these cases is covered carefully in the first chapter.
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1 Discrete Random Variables and Sigma-Algebras

1.1 Motivation

A central idea in probability theory is measurability. At first sight this seems like an unnecessary

technicality, but it becomes indispensable once we view probability as a language for describing

information. In economics and finance, uncertainty is not only about which outcome occurs but

also about what agents know. The structure that encodes what is knowable is a sigma-algebra,

a collection of events that can be distinguished. Measure theory therefore provides the rigorous

connection between random variables, which assign numerical values to states of the world, and

the partitions of information that agents actually perceive.

One way to build intuition is to imagine an economy subject to shocks. Nature selects a state

from some set of possibilities, but an agent does not observe this state directly. Instead the agent

learns only which cell of a partition the state belongs to. For instance, the agent may only be able

to tell whether productivity is high or low, without knowing the precise underlying disturbance.

The partition of states generates a sigma-algebra, and random variables that are measurable with

respect to this sigma-algebra are precisely those variables whose values depend only on the coarsened

information conveyed by the partition. In this way, conditional expectation can be understood as

averaging given what is known, and the formalism of sigma-algebras becomes the natural language

for linking probability with economic decision-making.

1.2 Sigma-Algebras

A sigma-algebra on a set Ω is a collection F of subsets of Ω that is closed under complements and

countable unions, and that contains the whole set Ω itself. The elements of F are called measurable

sets or events. Intuitively, F represents the events about which we are able to speak in probabilistic

terms, so that probabilities can be consistently assigned.

Given any family of subsets of Ω, one can ask for the smallest sigma-algebra that contains them.

This is called the sigma-algebra generated by the family.

1.3 Examples

The construction of sigma-algebras is easiest to understand through simple cases.

Suppose first that we start with a single subset A ⊆ Ω. The sigma-algebra generated by A must

contain Ω and ∅, and it must also contain A and its complement Ac. In fact no further sets are

needed, so we obtain

σ({A}) = {∅, A, Ac, Ω}.

If instead we start with two disjoint subsets A,B ⊆ Ω, the generated sigma-algebra must contain

A and B as well as their complements. Because sigma-algebras are closed under unions, the set
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A ∪B must also appear. Thus the sigma-algebra consists of the eight sets

∅, A, B, A ∪B, Ac, Bc, (A ∪B)c, Ω.

This collection is precisely all unions of the partition {A,B, (A ∪B)c}.
More generally, if Ω is partitioned into finitely many disjoint cells A1, . . . , An, then the sigma-

algebra generated by this partition is exactly the collection of all possible unions of the cells. As

proved below, this sigma-algebra is the smallest one containing the partition. In this way the

sigma-algebra encodes the information that distinguishes only which cell of the partition contains

the true state of the world.

Theorem 1.1. Let Ω be a set and let P = {A1, . . . , An} be a finite partition of Ω; that is, each Ai

is nonempty, the sets Ai are pairwise disjoint, and
⋃n

i=1Ai = Ω. Define

G :=

{ ⋃
i∈I

Ai : I ⊆ {1, . . . , n}

}
,

the collection of all unions of cells of the partition (including ∅ and Ω). Then G is a sigma-algebra

on Ω, and it is the smallest sigma-algebra containing every cell Ai. In other words, G = σ(P).

Proof. First, note that ∅ ∈ G (the empty union) and Ω ∈ G (the union of all cells). If B =
⋃

i∈I Ai

for some I ⊆ {1, . . . , n}, then its complement is

Bc = Ω \
⋃
i∈I

Ai =
⋃
i/∈I

Ai,

which again belongs to G. Hence G is closed under complements. Since the partition is finite, any

countable union of sets in G reduces to a finite union of distinct cells, and therefore remains in G.
Thus G is a sigma-algebra.

By construction, each Ai ∈ G, so G contains the partition. If F is any sigma-algebra containing

P, then F must contain every union of cells (because sigma-algebras are closed under unions).

Therefore G ⊆ F . It follows that G is the smallest sigma-algebra containing P, i.e. G = σ(P).

Example 1.2 (Coin tosses). Consider two independent tosses of a fair coin with sample space

Ω = {HH,HT, TH, TT}.

Partition Ω according to the number of heads observed:

A0 = {TT}, A1 = {HT, TH}, A2 = {HH}.

The sigma-algebra generated by this partition is

σ(P) = {∅, A0, A1, A2, A0 ∪A1, A0 ∪A2, A1 ∪A2, Ω}.
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In economic applications, this construction corresponds to the information available to an agent:

observing the partition is the same as knowing only which cell contains the true state, and all

measurable events are those that can be distinguished on the basis of this information.

Existence of the sigma-algebra generated by a family

It will be very useful to consider subsigma algebras generated by some events. This is because

as an agent it is possible that I have knowledge of some events and I want to know the simplest

subsigma algebra that models my knowledge. The next proposition characterises such a situation.

Proposition 1.3. Let A be any family of subsets of Ω (or more generally any family of functions

X : Ω → R). Then there exists a smallest sigma-algebra containing A. Concretely, the intersection

of all sigma-algebras that contain A is itself a sigma-algebra and is the smallest sigma-algebra

containing A.

Proof. Let S be the collection of all sigma-algebras on Ω that contain A. Note S is nonempty

because the power set P(Ω) is a sigma-algebra containing A. Define

G :=
⋂

F∈S

F .

Since arbitrary intersections of sigma-algebras are sigma-algebras, G is a sigma-algebra. By con-

struction G contains A, and if H is any sigma-algebra with A ⊆ H then H ∈ S , hence G ⊆ H.

Thus G is the smallest sigma-algebra containing A.

Definition 1.4. If A is a family of subsets of Ω we write σ(A) for the smallest sigma-algebra

containing A; equivalently σ(A) is the intersection of all sigma-algebras that contain A.

Similarly, if X1, . . . , Xn are random variables on (Ω,F ,P), we define

σ(X1, . . . , Xn) := σ
(
{X1, . . . , Xn}

)
to be the smallest sigma-algebra with respect to which each Xi is measurable.

Atoms and sigma-algebras generated by random variables

We now give a simple, concrete description of σ(X1, . . . , Xn) in the discrete case. To keep terms

explicit we first define an atom.

Definition 1.5 (Atom). Let H be a sigma-algebra on Ω. A nonempty set A ∈ H is called an atom

of H if for every E ∈ H with E ⊆ A we have either E = ∅ or E = A. In other words, an atom is a

minimal nonempty event in the sigma-algebra: it cannot be split further inside H.

Definition 1.6 (Sigma-algebra generated by random variables). LetX1, . . . , Xn be discrete random

variables on (Ω,F ,P). The sigma-algebra generated by them, denoted σ(X1, . . . , Xn), is the smallest

5



sigma-algebra that contains all events of the form

{Xi = x} for each i = 1, . . . , n and each value x in the range of Xi.

Theorem 1.7. Let X1, . . . , Xn be discrete random variables with joint range

S = {(X1(ω), . . . , Xn(ω)) : ω ∈ Ω}.

For each (x1, . . . , xn) ∈ S define the joint-value cell

Ax1,...,xn = {ω ∈ Ω : X1(ω) = x1, . . . , Xn(ω) = xn}.

Then the nonempty cells Ax1,...,xn form a partition of Ω, and

σ(X1, . . . , Xn) = σ
(
{Ax1,...,xn : Ax1,...,xn ̸= ∅}

)
.

Moreover, each nonempty Ax1,...,xn is an atom of σ(X1, . . . , Xn).

Note: I suggest that you see the example below before reading the proof. This proof is straight-

forward but the notation makes it clunky and complex. The idea is clearly visible in Example

1.8.

Proof. First, for any xi in the range of Xi, the event {Xi = xi} is a union of certain joint-value

cells Ax1,...,xn . Therefore every {Xi = xi} lies in the sigma-algebra generated by the cells, so

σ(X1, . . . , Xn) is contained in that sigma-algebra.

Conversely, each joint-value cell Ax1,...,xn can be written as the intersection

Ax1,...,xn = {X1 = x1} ∩ · · · ∩ {Xn = xn},

which shows that every cell belongs to σ(X1, . . . , Xn). Hence the sigma-algebra generated by the

cells is contained in σ(X1, . . . , Xn).

The two inclusions together prove equality. Finally, each nonempty Ax1,...,xn is an atom, because

no smaller nonempty event in the sigma-algebra can be contained inside it.

Example 1.8 (Two coin tosses). Let X and Y be independent coin tosses taking values in {0, 1}.
The possible outcomes are the four pairs

(0, 0), (0, 1), (1, 0), (1, 1).

Hence the atoms are

A00 = {ω : X = 0, Y = 0}, A01 = {ω : X = 0, Y = 1},

A10 = {ω : X = 1, Y = 0}, A11 = {ω : X = 1, Y = 1}.
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Therefore

σ(X,Y ) =
{
∅, A00, A01, A10, A11, A00 ∪A01, . . . , Ω

}
,

i.e. all unions of the four atoms. In general, σ(X,Y ) corresponds to knowing the joint outcome of

(X,Y ).

This construction shows how multiple discrete random variables induce a partition of the sample

space into joint-value cells, and the generated sigma-algebra is precisely the information structure

that distinguishes which cell the true state belongs to.

1.4 Measurable Functions

Let (Ω,F) be a measurable space, where F is a sigma-algebra on Ω. A function X : Ω → R is said

to be measurable with respect to F if for every real number b, the set

Eb = {ω ∈ Ω : X(ω) ≤ b}

belongs to F . In other words, the event that X takes a value less than or equal to any given

threshold must be describable in terms of the information encoded by F .

When F is generated by a finite partition P = {A1, . . . , An}, the structure of measurable

functions becomes very transparent. For each cell Ai we define the indicator 1Ai , which is 1 on Ai

and 0 elsewhere.

Theorem 1.9. Let Ω be a set and let P = {A1, . . . , An} be a finite partition of Ω. Write F = σ(P)

for the sigma-algebra generated by the partition. If X : (Ω,F) → R is F-measurable (in the sense

that for every real b the set

Eb = {ω ∈ Ω : X(ω) ≤ b}

lies in F), then X is constant on each cell Ai. Consequently there exist real numbers c1, . . . , cn

such that

X =

n∑
i=1

ci 1Ai .

Moreover, this representation is unique: ci is the common value of X on Ai.

Proof. Because F = σ(P), every set in F is a union of cells Ai. In particular each set Eb is a union

of some subcollection of the cells.

Fix an index i and suppose, for contradiction, that X is not constant on Ai. Then there exist

ω1, ω2 ∈ Ai with X(ω1) ̸= X(ω2). Without loss of generality assume X(ω1) < X(ω2). Choose a

real number b with

X(ω1) < b < X(ω2).

By definition ω1 ∈ Eb and ω2 /∈ Eb. But Eb ∈ F , so Eb must be a union of whole cells of the

partition; it cannot split a single cell into two parts. This contradicts the fact that ω1 and ω2 lie
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in the same cell Ai while one belongs to Eb and the other does not. Therefore no such pair ω1, ω2

exists, and X must be constant on Ai.

Since the choice of i was arbitrary, X is constant on every cell. Let ci denote the common

value of X on Ai. Then for every ω ∈ Ω we have X(ω) =
∑n

i=1 ci 1Ai(ω), which gives the claimed

representation. Uniqueness of the coefficients ci follows because the Ai are disjoint: the value of X

on Ai determines ci.

In summary, any F-measurable function X must be constant on each Ai, since no finer distinc-

tion is possible within the sigma-algebra and every measurable function has the representation

X =

n∑
i=1

ci 1Ai ,

where ci ∈ R is the constant value of X on the set Ai.

This characterization shows concretely that measurability with respect to a partition means

depending only on which cell contains the true state of the world. Later, this perspective will serve

as the foundation for conditional expectation, where general random variables are approximated

by measurable ones relative to a chosen sigma-algebra.

Remark 1.10. All of the results above extend immediately from finite to countable partitions. If

P = {A1, A2, . . . } is a countable partition of Ω, then the sigma-algebra generated by P consists of

all unions of the cells Ai, which may now be countably infinite. Every σ(P)-measurable function

is constant on each Ai, and therefore can be written in the form

X =

∞∑
i=1

ci 1Ai ,

where the series is pointwise finite because each ω ∈ Ω belongs to exactly one cell. Thus measurable

functions with respect to countable partitions are exactly the discrete random variables: they take

only countably many distinct values, one for each cell. In this sense, our discussion provides a

complete account of discrete random variables.

2 Probability Measures and Expectation

2.1 Probability Measure

Let (Ω,F) be a measurable space. A probability measure is a function P : F → [0, 1] satisfying the

following axioms:

1. P (Ω) = 1,
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2. P is countably additive: if (Ai)
∞
i=1 is a sequence of disjoint sets in F , then

P
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space.

2.2 Expectation

Let X : (Ω,F) → R be a random variable. Its expectation is denoted by the “integral notation”

E[X] =

∫
Ω
X(ω) dP (ω).

This definition is completely general and unifies the discrete and continuous cases.

In the discrete case, where Ω is finite or countable and P is determined by point masses P ({ω}),
the expectation reduces to a weighted sum:

E[X] =
∑
ω∈Ω

X(ω)P ({ω}).

In the continuous case, where Ω ⊆ R and P admits a density f , the expectation takes the

familiar form

E[X] =

∫
Ω
X(x) f(x) dx.

2.3 Example

Let Ω = [0, 1], F the usual sigma-algebra generated by intervals, and P be the Lebesgue measure

restricted to [0, 1]. This is the uniform distribution on [0, 1]. For a random variable X(ω) = ω, the

expectation is

E[X] =

∫ 1

0
ω dω =

1

2
.

Thus under the uniform distribution the mean value is 1/2, as expected.

2.4 Discussion

The material developed so far can be viewed as a complete account of the theory of discrete random

variables. Sigma-algebras generated by finite or countable partitions describe the information

structure, and measurable functions with respect to these sigma-algebras are precisely the discrete

random variables. Each such random variable is constant on every cell of the partition and can be

written as a (finite or countable) linear combination of indicator functions.
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2.5 Exercises

Exercise 1. Let Ω = {1, 2, 3, 4}. For each of the following partitions P of Ω, explicitly write

down the sigma-algebra σ(P) as a collection of subsets of Ω.

1. P = {{1, 2}, {3, 4}}.

2. P = {{1}, {2}, {3, 4}}.

3. P = {{1}, {2, 3}, {4}}.

Explain in each case why your collection is closed under complements and countable unions, and

why no smaller sigma-algebra contains the partition.

Exercise 2. Consider the sample space Ω = {HH,HT, TH, TT} of two coin tosses. Let P =

{A0, A1, A2} be the partition according to the number of heads:

A0 = {TT}, A1 = {HT, TH}, A2 = {HH}.

Define a random variable X : Ω → R by X(ω) = number of heads in outcome ω. Show that X is

measurable with respect to σ(P) and write it in the form

X =
2∑

i=0

ci 1Ai .

Is the random variable Y (ω) = 1{ω=HT} measurable with respect to σ(P)? Explain.

3 Markov Decision Processes

3.1 Motivation

Economic agents frequently face decisions under uncertainty and over time. A worker chooses

whether to accept or reject a job offer today, knowing that the consequences of this choice affect

both present and future payoffs. A firm decides whether to invest in capital this period, taking

into account the stochastic evolution of productivity tomorrow. These problems combine three

elements:

(i) an evolving random environment,

(ii) a sequence of decisions that must be taken contingent on the realized states, and

(iii) an objective function, typically the expected present discounted value of returns.
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The natural mathematical framework for such problems is a Markov Decision Process (MDP).

An MDP formalizes the primitives of the problem: a state space describing the relevant economic

environment, an action space describing feasible choices, a stochastic law of motion for states, and

a reward or payoff function. A policy specifies how actions are chosen as a function of states, and

the central object of interest is the value function, defined as the expected discounted payoff when

starting from a given state and following a particular policy.

The recursive formulation of dynamic programming is essential here. Rather than treating

the problem as one of optimizing over an infinite sequence of actions, we exploit the principle of

optimality : any optimal plan, when restricted to a subproblem beginning at a future state, must

itself be optimal for that subproblem. This principle yields the Bellman equation, a recursive

characterization of the value function that collapses an infinite-horizon optimization problem into

a fixed-point problem.

To make the framework concrete, we turn to the McCall job search problem. Here an un-

employed worker receives wage offers drawn from a known distribution. Each period she chooses

whether to accept the offer and exit unemployment, or reject it and continue searching. The model

illustrates all the primitives of an MDP: the state is the current offer, the action is to accept or re-

ject, the payoff depends on the action, and the law of motion is given by the stochastic distribution

of future offers. The Bellman equation captures the trade-off between immediate acceptance and

the option value of continued search. This simple example will serve as our running case study.

3.2 Definitions

We work in a probability space where all randomness is generated by a sequence of random variables.

At each date t = 0, 1, 2, . . . , the system is in a state St taking values in a finite set S. The agent

chooses an action At from a finite set A. The choice of action affects both the immediate reward

and the distribution of the next state.

Formally, suppose that for every pair (s, a) ∈ S × A we are given two primitives. First, the

one-period reward r(s, a) is the payoff the agent receives if she takes action a in state s. Second,

the transition law is described by conditional probabilities

P(St+1 = s′ | St = s, At = a) = P (s′ | s, a),

which specify the distribution of the next state random variable given the current state and action.

Together, {r(s, a), P (· | s, a)} describe the environment.

A stationary policy π is a function from states to actions. It specifies how the agent acts:

whenever the current state is s, the chosen action is At = π(s). Thus the pair (St, At) evolves as

a controlled Markov chain. More general policies could be random or history-dependent, but we

restrict attention to stationary deterministic policies, since under discounting they are sufficient for

optimality in the finite case.

Given an initial state S0 = s, a policy π, and a discount factor β ∈ (0, 1), the value function is
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the expected present discounted value of rewards,

V π(s) := Eπ
s

[ ∞∑
t=0

βt r(St, π(St))

]
,

where the expectation is taken with respect to the probability law generated by π and the transition

probabilities. This value function records the performance of policy π when starting in state s.

The optimal value function is defined by

V ∗(s) := sup
π

V π(s),

which gives the maximal attainable expected payoff from state s. An optimal policy is one that

achieves this value.

The recursive characterization of V ∗ is given by the Bellman equation. For each state s,

V ∗(s) = max
a∈A

{
r(s, a) + β E[V ∗(St+1) | St = s,At = a ]

}
.

The expectation on the right is computed using the transition probabilities P (s′ | s, a). Thus, in

the finite case,

V ∗(s) = max
a∈A

{
r(s, a) + β

∑
s′∈S

P (s′ | s, a)V ∗(s′)
}
.

This is the formula we will actually use. It states that the optimal value of starting in state s

is the maximum, over feasible actions a, of the immediate reward plus the discounted expected

continuation value.

3.3 Examples: The McCall Job Search Problem

Consider an unemployed worker who at each date t = 0, 1, 2, . . . receives a wage offer Wt. The

sequence {Wt} is i.i.d. with cumulative distribution function F on R+. If the worker accepts the

offer Wt = w, she exits unemployment permanently and earns w each period thereafter. If she

rejects, she receives an unemployment benefit b ≥ 0 and faces a new offer Wt+1 next period. The

discount factor is β ∈ (0, 1).

The state is the current offer w, and the actions are accept or reject. The payoff from acceptance

is w each period, yielding a present value of w/(1− β). If the worker rejects, she gets b today and

expects to continue tomorrow with a new offer. The value function satisfies the Bellman equation

V (w) = max

{
w

1− β
, b+ β E[V (W ′) ]

}
,

where W ′ ∼ F is an independent wage draw.

Reservation wage: The structure of the Bellman equation implies there exists a threshold w∗

such that the worker accepts if w ≥ w∗ and rejects otherwise. At the reservation wage the worker
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is indifferent, so w∗ satisfies
w∗

1− β
= b+ β E[V (W ′) ].

Notice that if the worker rejects, the continuation value does not depend on today’s offer. Thus

we can write

E[V (W ′) ] =

∫ w∗

0
V (w∗) dF (w′) +

∫ ∞

w∗

w′

1− β
dF (w′).

The first term reflects the event that tomorrow’s offer is below w∗, in which case the worker will

reject again and obtain continuation value V (w∗). The second term covers the case that tomorrow’s

offer exceeds w∗, in which case she accepts at w′. Since V (w∗) = w∗/(1 − β), we obtain the

fundamental equation for the reservation wage:

w∗

1− β
= b+ β

[
F (w∗) · w∗

1− β
+

∫ ∞

w∗

w′

1− β
dF (w′)

]
.

Multiplying through by (1− β) gives the usable formula

w∗ = (1− β)b+ β
(
F (w∗)w∗ +

∫ ∞

w∗
w′ dF (w′)

)
.

This nonlinear equation in w∗ can be solved numerically given b, β, and F . In the discrete case the

integrals become finite sums.

Discussion: The reservation wage increases with the benefit level b: higher benefits raise the value

of waiting, leading to more selectivity. It also increases with the discount factor β, since patience

magnifies the value of future opportunities. The shape of the wage distribution matters: if high

wages are sufficiently likely, the integral term is larger, raising w∗. Conversely, if the distribution

is concentrated at low wages, w∗ is lower.

Economic interpretations: In countries with generous unemployment insurance and high

expected wages, workers set higher reservation wages, which lengthens unemployment spells but

leads to better job matches. In countries with minimal benefits and lower wage distributions, work-

ers accept more quickly, reducing unemployment duration but often at the cost of poorer matches

and lower long-term income. Thus, differences in labor market institutions and productivity dis-

tributions translate directly into observable differences in unemployment and standards of living.

3.4 Discussion

The concepts of policy and value function admit a direct economic interpretation. A policy π is

nothing more than a rule of behavior, prescribing which action is taken as a function of the current

state. In economic models it plays the role of a decision rule: in the McCall problem it is the

acceptance or rejection rule; in investment models it is the mapping from the capital stock to the

investment decision. The value function V π represents the performance of such a rule. It answers

the question: if the agent follows policy π from now on, what is the expected present discounted

13



value of her payoffs starting from a given state? In this sense, the value function is the evaluation

of a particular behavioral plan.

The optimal value function V ∗ is then the upper envelope of all feasible policies. It embodies the

idea that rational economic agents compare policies, discard inferior ones, and act as if maximizing

over the feasible set. An optimal policy π∗ realizes this maximum. Thus the recursive framework

provides a precise link between rules of behavior and their economic consequences, without requiring

the agent to optimize over entire sequences of actions all at once.

The recursive formulation, captured in the Bellman equation, is at the heart of Sargent’s frame-

work for macroeconomics. Instead of treating a dynamic optimization problem as an intertemporal

choice over infinite paths, the recursive approach reduces it to the study of a functional equation for

V ∗. The principle of optimality guarantees that once the Bellman equation is solved, the associated

policy is globally optimal. This transformation has two decisive advantages. First, it delivers a

transparent economic interpretation: each decision balances current reward against the discounted

expected continuation value, with the latter summarizing all future possibilities. Second, it makes

computation feasible. The contraction mapping property ensures that repeated application of the

Bellman operator converges rapidly to V ∗, which is the basis of modern numerical dynamic pro-

gramming.

In Sargent’s recursive macroeconomics, this framework is not a technical aside but the central

organizing device. Models of consumption, saving, investment, and search are all formulated as

recursive problems, with state variables capturing the relevant information and Bellman equations

delivering both the qualitative logic and the quantitative solution. The job search model of McCall

is the simplest laboratory: the state is a single random wage offer, the policy is a reservation

wage rule, and the Bellman equation encodes the trade-off between immediate employment and the

option value of waiting. More elaborate models—capital accumulation, stochastic growth, asset

pricing—are built on precisely the same recursive foundations.

3.5 Exercises

Exercise 3.1. Compute the reservation wage and the corresponding value in the McCall model

when wage offers are uniformly distributed on [0,M ]. Let the unemployment benefit be b ≥ 0, the

discount factor be β ∈ (0, 1), and assume the reservation wage lies in [0,M ]. Derive the reservation

wage w∗ and the value at the reservation wage.

Final answer:

w∗ =
M −

√
(1− β)M

(
M(1 + β)− 2βb

)
β

, V (w∗) =
w∗

1− β
.

Exercise 3.2. Solve a small finite-state macroeconomic MDP by matrix methods. Consider an

economy whose productivity can be either high (H) or low (L). Each period a planner (or a

representative firm) chooses between two actions: “invest” (I) or “do nothing” (N). If the economy
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is in state H and the planner chooses I the immediate payoff is r(H, I) = 10; if in H and she chooses

N the payoff is r(H,N) = 8. If the state is L the payoffs are r(L, I) = 6 and r(L,N) = 3. Transition

probabilities depend on the action: under I the transition matrix (rows current state H,L; columns

next state H,L) is

P (· | ·, I) =

0.9 0.1

0.6 0.4

 ,

and under N it is

P (· | ·, N) =

0.7 0.3

0.3 0.7

 .

Take β = 0.95. State the MDP formally in words, construct the four deterministic stationary

policies, and compute each policy’s value vector by solving the linear system. Explain how to

obtain the optimal value function and an optimal policy from these computations.

Exercise 3.3. Derive the general linear-algebra principle used to solve finite-state MDPs and give

the principal constructive corollaries used in applications. (Answer in one paragraph.)

Answer: For a finite-state MDP with n states and a fixed stationary deterministic policy π, policy

evaluation reduces to a linear system: if P π is the n×n transition matrix induced by π and rπ ∈ Rn

is the vector of one-period rewards under π, then the value vector satisfies

V π = rπ + βP πV π,

so that, because β ∈ (0, 1), the matrix I − βP π is invertible and

V π = (I − βP π)−1rπ.

4 Conditional Expectation

4.1 Motivation

In economics, uncertainty is rarely just about which state of the world occurs; it is equally about

what agents know when they make decisions. The central tool for formalizing this interplay between

randomness and information is conditional expectation.

From a statistical perspective, conditioning means updating beliefs when new information ar-

rives. In introductory courses this is presented as conditioning on an event, for example learning

that a die roll landed in the set {1, 2, 3}. In more advanced applications, especially in dynamic

models, information typically comes in the form of a sigma-algebra: a collection of events that

captures precisely what an agent can distinguish at a given point in time. Conditional expectation

with respect to such a sigma-algebra is the mathematical device that transforms a random variable

into its best forecast based solely on that information.
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For economists, this idea is indispensable. In dynamic programming, the Bellman equation rests

on taking expected future payoffs conditional on the current state. In financial economics, pricing

kernels and asset returns are defined through conditional expectations given market information.

In econometrics, forecasting and estimation rely on projecting random variables onto the space of

what is observable. Across all of these contexts, conditional expectation provides the rigorous link

between information and decision making, ensuring that our models respect both the randomness

of outcomes and the informational constraints faced by agents.

In macroeconomics, the role of conditional expectation is particularly visible in the debate be-

tween the adaptive expectations hypothesis (AEH) and the rational expectations hypothesis (REH).

Under AEH, agents form forecasts of future variables by adjusting past forecasts in response to

recent forecast errors; the updating rule is ad hoc and does not directly appeal to probability the-

ory. By contrast, REH formalizes expectations as mathematical conditional expectations: given

the information available at time t, agents’ forecasts of tomorrow’s variables are defined as the

conditional expectation with respect to that sigma-algebra. This shift is profound. It means that

expectations are model-consistent, forward-looking, and disciplined by probability theory rather

than by arbitrary adjustment rules. In this way, conditional expectation serves as the mathemat-

ical backbone of modern macroeconomic modeling, ensuring that the way agents form beliefs is

internally consistent with the structure of the economy itself.

4.2 Conditional Expectation with respect to Events

Theorem 4.1. Let (Ω,F , P ) be a probability space and let A ∈ F satisfy P (A) > 0. For any

integrable random variable X : Ω → R,

E[X|A] :=

∫
Ω
X dPA =

1

P (A)

∫
Ω
X1A dP

where PA(B) = P (B | A) = P (B ∩A)/P (A).

Proof. We will prove the claim only for Ω finite or countable we may write expectations as sums.

For each ω ∈ Ω let p(ω) = P ({ω}). The conditional probability mass function under PA is

pA(ω) = PA({ω}) =
P ({ω} ∩A)

P (A)
=


p(ω)

P (A)
, ω ∈ A,

0, ω /∈ A.

Hence the expectation of X under PA is the sum

EPA
[X] =

∑
ω∈Ω

X(ω) pA(ω) =
∑
ω∈A

X(ω)
p(ω)

P (A)
=

1

P (A)

∑
ω∈Ω

X(ω)1A(ω) p(ω).
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The final sum is precisely
1

P (A)

∫
ΩX1A dP , so

E[X|A] =
1

P (A)

∫
Ω
X1A dP,

which proves the claim.

Note that in the continuous case, when P admits a density f with respect to Lebesgue measure,

one has

E[X | A] =

∫
A
X(ω) f(ω) dω∫
A
f(ω) dω

.

Example 4.2. Let Ω = {H,T}3 with the uniform probability P ({ω}) = 1/8. Let X(ω) be the

number of heads in outcome ω. For an atom A of a sigma-algebra the formula from the theorem

gives

E[X | A] =

∑
ω∈A

X(ω)P ({ω})

P (A)
=

∑
ω∈A

X(ω) (1/8)

P (A)
.

Conditioning on F1. The atoms are

AH = {HHH,HHT,HTH,HTT}, AT = {THH,THT, TTH, TTT},

each has probability P (AH) = P (AT ) = 4/8 = 1/2. Compute the numerator sums:∑
ω∈AH

X(ω) = 3 + 2 + 2 + 1 = 8,
∑
ω∈AT

X(ω) = 2 + 1 + 1 + 0 = 4.

Hence

E[X | AH ] =
(1/8) · 8
1/2

=
1

1/2
= 2,

E[X | AT ] =
(1/8) · 4
1/2

=
1/2

1/2
= 1.

Thus E[X | F1] = 2 on AH and 1 on AT .

Conditioning on F2. The atoms are the four outcomes of the first two tosses, each containing
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two full outcomes and each with probability 2/8 = 1/4. Their numerator sums are∑
ω: first two =HH

X(ω) = 3 + 2 = 5,∑
ω: first two =HT

X(ω) = 2 + 1 = 3,∑
ω: first two =TH

X(ω) = 2 + 1 = 3,∑
ω: first two =TT

X(ω) = 1 + 0 = 1.

Hence

E[X | first two = HH] =
(1/8) · 5
1/4

=
5/8

1/4
= 2.5,

E[X | first two = HT ] =
(1/8) · 3

1/4
=

3/8

1/4
= 1.5,

E[X | first two = TH] = 1.5,

E[X | first two = TT ] =
(1/8) · 1

1/4
=

1/8

1/4
= 0.5.

Equivalently, if k ∈ {0, 1, 2} denotes the number of heads in the first two tosses then

E[X | F2] = k + 1
2 on the atom with k heads.

Conditioning on F3. Each atom is a singleton {ω} with P ({ω}) = 1/8, so

E[X | {ω}] = (1/8)X(ω)

1/8
= X(ω).

Hence E[X | F3] = X.

These calculations follow directly from the event-conditioning formula E[X | A] =
E[X1A]

P (A)
applied to each atom A of the relevant sigma-algebra.

4.3 Conditional expectation via partitions: an economic perspective

Consider an agent who, before any information is revealed, has a belief about a random variable

X. Her ex ante belief is the unconditional expectation E[X]. Now suppose a natural experiment

occurs that reveals only coarse information: the outcome ω of the underlying experiment is not

observed directly, but only through which cell of a partition {A1, . . . , An} it belongs to. Each cell

Ai represents an information set. The question is: how should the agent update her expectation of

X after seeing which cell occurs?

Definition 4.3 (Conditional expectation with respect to a partition sigma algebra). Let (Ω,F , P )
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be a probability space, and let {A1, . . . } be a partition of Ω. Let G = σ({A1, . . . }) be the sigma-

algebra generated by this partition. For any random variable X : Ω → R we define

E[X | G](ω) =

∞∑
i=1

E[X | Ai]1Ai(ω),

where

E[X | Ai] =

∫
Ai

X dP

P (Ai)
for P (Ai) > 0.

Economic interpretation. Ex ante the agent’s expectation is E[X]. Ex post, after learning that

the realized state lies in some cell Ai, she updates to the conditional expectation E[X | Ai] = mi.

The conditional expectation E[X | G] therefore bundles together all these ex post expectations into

a single random variable: it tells us, for each possible outcome, which updated forecast the agent

would hold given the information that outcome reveals.

4.4 Conditional Expectation: Defining property

Now we prove an important property that defines conditional expectation in a more general setting.

Theorem 4.4 (Existence and uniqueness of conditional expectation). Let (Ω,F , P ) be a probability

space and let G ⊆ F be a sub-sigma-algebra. If X : Ω → R is integrable (i.e.
∫
Ω |X| dP < ∞), then

there exists a G-measurable integrable random variable Y such that∫
A
Y dP =

∫
A
X dP for every A ∈ G.

Any two such G-measurable functions agree almost surely (i.e. they are equal except on a set of

probability zero). A random variable Y with the displayed property is denoted E[X | G] and is called

a conditional expectation of X given G.

Proof of existence and uniqueness in the partition case. We prove the theorem in the special case

when G = σ(P) is the sigma-algebra generated by a finite or countable partition P = {Ai : i ∈ I} of

Ω. The proof is constructive and elementary, and it both exhibits existence and proves uniqueness

(up to null sets).

Construction / Existence. For each index i ∈ I with P (Ai) > 0 define

mi :=

∫
Ai

X dP

P (Ai)
,

the average (expectation) of X on the atom Ai. If P (Ai) = 0 define mi := 0 . Now set

Y (ω) :=
∑
i∈I

mi 1Ai(ω).

19



By construction Y is G-measurable (it is constant on each part) and integrable (since
∑

i |mi|P (Ai) ≤∑
i

∫
Ai

|X| dP =
∫
Ω |X| dP < ∞).

Let A ∈ G. Then A is a disjoint union of parts: A =
⋃

j∈J Aij for some index set J ⊆ I. Using

linearity of the integral and the definition of mi,∫
A
Y dP =

∑
j∈J

mijP (Aij ) =
∑
j∈J

∫
Aij

X dP =

∫
A
X dP.

Thus Y satisfies the defining property of conditional expectation on every A ∈ G. This proves

existence in the partition case.

Uniqueness (up to a null set). Suppose Y ′ is another G-measurable integrable function with∫
A Y ′ dP =

∫
AX dP for every G ∈ G. Then for any atom Ai with P (Ai) > 0 taking A = Ai gives∫

Ai

(Y − Y ′) dP = 0.

But both Y and Y ′ are constant on Ai, so Y − Y ′ is constant on Ai. Therefore the integral of

Y − Y ′ over Ai equals that constant times P (Ai); since P (Ai) > 0 this forces the constant to be

zero, i.e. Y = Y ′ on Ai. Since this holds for every part with positive probability, Y = Y ′ almost

surely. Hence the conditional expectation is unique up to sets of probability zero.

This completes the constructive proof of existence and uniqueness when G is the sigma-algebra

generated by a partition. The general theorem (for arbitrary sub-sigma-algebras) is true as stated

above; its proof in full generality requires additional measure-theoretic machinery (Radon–Nikodym

theorem or standard Hilbert-space/approximation arguments) which we omit here and replace in

applications by the explicit partition construction that is all we need for discrete models.

Remark 4.5 (Econometric interpretation). In econometrics, conditional expectation appears nat-

urally in the theory of forecasting. Suppose an econometrician wishes to predict a random variable

Y using information contained in a sigma-algebra G, which represents the observations or regressors

that have been recorded. A forecast Y e is called optimal if it minimizes the mean squared error

E
[
(Y − Y e)2

]
among all G-measurable candidates Y e.

The first-order condition for this minimization states that the forecast error Y −Y e is orthogonal

to every G-measurable variable. In particular, for every A ∈ G we have

E[(Y − Y e)1A] = 0.

Rearranging yields

E[Y 1A] = E[Y e 1A],
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which is exactly the defining property of conditional expectation from the theorem above and thus

Y e = E[X | G].

Thus, in econometric language, conditional expectation is nothing more than the best forecast

of Y based on the available information G, in the sense of minimizing mean squared error.

4.5 Conditional Expectation with respect to a Random Variable

It is often useful to speak of the conditional expectation of one random variable given another.

Formally, if X and Y are random variables on (Ω,F , P ), we define

E[X | Y ] := E[X | σ(Y )],

where σ(Y ) denotes the sigma-algebra generated by Y . That is, E[X | Y ] is the conditional

expectation of X given the information contained in Y . By construction, E[X | Y ] is a random

variable that is measurable with respect to σ(Y ), and therefore can be expressed as a function of

Y 1:

E[X | Y ](ω) = g(Y (ω)) for some function g : R → R.

Examples.

1. Discrete case. Let Y take values y1, . . . , yn with P (Y = yj) > 0. Then

E[X | Y = yj ] =

∫
{Y=yj}X dP

P (Y = yj)
,

and E[X | Y ] is the random variable that equals this conditional mean on the event {Y = yj}:

E[X | Y ](ω) =

n∑
j=1

E[X | Y = yj ] 1{Y=yj}(ω).

2. Coin toss illustration. Toss two fair coins. Let Y be the first coin (1 if H, 0 if T ), and let X

be the total number of heads. Then E[X | Y = 1] = 1.5 (one head already, plus 1/2 expected

from the second coin), while E[X | Y = 0] = 0.5. Hence

E[X | Y ](ω) =

1.5 if the first toss is H,

0.5 if the first toss is T .

1In general, this follows from Doob-Dynkin lemma which we will not prove. For discrete Y , it follows from the
characterisations in Chapter 2.
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3. Continuous case. If (X,Y ) has joint density fX,Y and Y has marginal density fY , then

E[X | Y = y] =

∫
R x fX,Y (x, y) dx

fY (y)
.

The conditional expectation E[X | Y ] is the function of Y obtained by substituting the

realized value Y (ω) into this formula.

4.6 Properties of conditional expectation

Let P = {A1, A2, . . . } be a finite or countable partition of Ω, and let

G = σ(P)

be the sigma-algebra it generates. Recall that for any random variable X,

E[X | G](ω) =
∑
i

∫
Ai

X dP

P (Ai)
1Ai(ω).

Theorem 4.6 (Linearity). For random variables X,Z and constants a, b ∈ R,

E[ aX + bZ | G ] = aE[X | G] + bE[Z | G].

Proof. It suffices to check the claim on each part Ai,

E[ aX + bZ | Ai ] =

∫
Ai

(aX + bZ) dP

P (Ai)
= aE[X | Ai] + bE[Z | Ai].

Hence the conditional expectation is linear.

Proof. By the partition formula, for G = σ(P) we have

E[X | G] =
∑
i

∫
Ai

X dP

P (Ai)
1Ai .

Now condition again on H = σ(Q), where each Bj ∈ Q is a union of parts Ai ∈ P. Then

E
[
E[X | G]

∣∣ H
]
=

∑
j

∫
Bj

E[X | G] dP

P (Bj)
1Bj .

Substitute the formula for E[X | G]:∫
Bj

E[X | G] dP =
∑

i:Ai⊆Bj

∫
Ai

X dP

P (Ai)
P (Ai) =

∑
i:Ai⊆Bj

∫
Ai

X dP =

∫
Bj

X dP.
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Hence

E
[
E[X | G]

∣∣ H
]
=

∑
j

∫
Bj

X dP

P (Bj)
1Bj = E[X | H].

Remark 4.7 (Econometric interpretation of the tower property). The tower property has a simple

forecasting interpretation. Suppose there are two econometricians: one has access to the finer in-

formation set G, while another has access only to the coarser information set H ⊆ G. (Equivalently,
think of the same econometrician at two points in time: at an early date she only knows H, and

later she learns the more detailed G.)
The econometrician with information G forms the forecast E[X | G]. The econometrician with

less information cannot see G directly, but she can try to forecast the forecast itself. Her prediction

is E[E[X | G] | H].

The tower property asserts that this indirect procedure gives exactly the same answer as if she

had forecast X directly from H:

E
[
E[X | G]

∣∣ H
]
= E[X | H].

In other words, from the point of view of the coarser information set, it makes no difference whether

you first condition on the finer information and then average, or condition directly.

Economically, this means that expectations are internally consistent across different levels of

information. A forecast made at an early stage is the expected value of the more informed forecast

that will be made later.

Theorem 4.8 (Taking out what is known). If Z is G-measurable and X is integrable, then

E[XZ | G] = Z E[X | G].

Proof. Since Z is G-measurable it is constant on each Ai: say Z = zi on Ai. Then

E[XZ | Ai] =

∫
Ai

XZ dP

P (Ai)
= zi ·

∫
Ai

X dP

P (Ai)
= zi E[X | Ai].

Hence the property holds on each atom and thus on all of Ω.

Theorem 4.9 (Jensen’s inequality). If φ : R → R is convex and X is integrable, then

φ
(
E[X | G]

)
≤ E[φ(X) | G] pointwise on Ω.
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4.7 Applications

A central use of conditional expectation in economics is forecasting. Suppose Yt+1 is an economic

variable of interest (such as next period’s output, inflation, or asset return) and Ft is the information

available at date t. The optimal forecast, in the mean–squared error sense, is

E[Yt+1 | Ft].

This expression captures the idea that agents use the information they have today to form beliefs

about tomorrow.

In econometrics, this conditional expectation is the population regression function: given data

Z, the best predictor ofX is E[X | Z]. In finance, it appears in the fundamental pricing relation: the

current price of an asset is the conditional expectation of its discounted payoff, given the market’s

information set.

Thus conditional expectation provides a unified mathematical language for modeling expecta-

tions in macroeconomics, econometrics, and finance.

4.8 Exercises

Exercise 1. Let Ω = {1, 2, . . . , 8} with uniform probability P ({ω}) = 1/8 for each ω. Define the

random variable

X(1) = 0, X(2) = 1, X(3) = 2, X(4) = 3, X(5) = 4, X(6) = 5, X(7) = 6, X(8) = 7.

Consider the partitions

P = {{1}, {2}, . . . , {8}}, G = {{1, 2}, {3, 4}, {5, 6}, {7, 8}},

and

H = {{1, 2, 3, 4}, {5, 6, 7, 8}}.

Thus σ(P) is the finest sigma-algebra, G is a genuine coarsening of σ(P), and H is a coarsening of

G.

1. Compute E[X | G] by evaluating the average of X on each atom of G. Write the result in the

form

E[X | G](ω) =

4∑
i=1

mi 1Ai(ω),

where A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}, A4 = {7, 8} and give the numbers mi.

2. Compute E
[
E[X | G]

∣∣ H]
by averaging the values of E[X | G] over the atoms of H. Write the

result as a two–step function on the atoms {1, 2, 3, 4} and {5, 6, 7, 8}.

24



3. Compute E[X | H] directly by averaging X on the atoms of H.

4. Verify that

E
[
E[X | G]

∣∣ H]
= E[X | H],

thereby confirming the tower property for this genuine coarsening.

Exercise 2. Let Ω = {a, b, c} with probabilities P ({a}) = 1/2, P ({b}) = 1/3, P ({c}) = 1/6.

Consider the partition P = {A1, A2} with A1 = {a, b}, A2 = {c} and let G = σ(P). Define

X(a) = 2, X(b) = 1, X(c) = 0, Z(a) = 3, Z(b) = 3, Z(c) = 5.

Note that Z is G-measurable (constant on each atom). Compute both sides of the identity

E[XZ | G] ?
= Z E[X | G]

by evaluating each atom of P. Verify the equality numerically.

Exercise 3.

(a) Discrete case. Let (X,Y ) have the joint mass function

Y = 0 Y = 1

X = 0 0.2 0.1

X = 1 0.3 0.4

(rows sum to 1). For y = 0, 1 compute the conditional pmf P (X = x | Y = y) and then

compute E[X | Y = y]. Write the random variable E[X | Y ] as a function of Y .

(b) Continuous case. Let (X,Y ) have joint density

fX,Y (x, y) = 2, (x, y) ∈ {0 ≤ x ≤ y ≤ 1},

and fX,Y (x, y) = 0 elsewhere. Compute the marginal density fY (y), the conditional density

fX|Y (x | y) for 0 ≤ x ≤ y, and then compute

E[X | Y = y] =

∫ y

0
x fX|Y (x | y) dx.

Express E[X | Y ] as a function of Y .
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5 Martingales

5.1 Filtered Probability Spaces and Adapted Processes

We begin by recalling the basic setting in which martingale theory is formulated.

Definition 5.1 (Filtration). A filtration on a probability space (Ω,F , P ) is a sequence of sub-

sigma-algebras

G0 ⊆ G1 ⊆ · · · ⊆ F .

Each Gn represents the information available up to time n.

Definition 5.2 (Adapted process). A stochastic process (Xn)n≥0 is said to be adapted to the

filtration (Gn) if Xn is Gn-measurable for every n.

5.2 Martingales, Submartingales, and Supermartingales

Definition 5.3 (Martingale, submartingale, supermartingale). Let (Xn)n≥0 be an adapted process

with E[|Xn|] < ∞ for all n (i.e. integrable).

• X is a martingale if

E[Xn+1 | Gn] = Xn a.s. for all n.

• X is a submartingale if

E[Xn+1 | Gn] ≥ Xn.

• X is a supermartingale if

E[Xn+1 | Gn] ≤ Xn.

Gambling story (Motivation)

Think of Xn as the total wealth of a gambler, who bets one Rupee per game, after n games.

The increment

Xn+1 −Xn

represents the profit or loss incurred in the (n+ 1)-st game.

The nth game is called fair if

E[Xn+1 −Xn | Gn] = 0,

unfair against the gambler if

E[Xn+1 −Xn | Gn] ≤ 0,

and favorable if

E[Xn+1 −Xn | Gn] ≥ 0.
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5.3 Basic Examples

Proposition 5.4 (Three canonical martingales). All statements are with respect to the natural

filtration Gn = σ(Y1, . . . , Yn) or σ(Z1, . . . , Zn) (as in Definition 1.4).

(a) Sum of independent zero-mean variables. Let (Yk)k≥1 be independent with E[|Yk|] < ∞
and E[Yk] = 0. Define

Mn :=
n∑

k=1

Yk, n ≥ 1, M0 := 0.

Then (Mn) is a martingale with respect to Gn = σ(Y1, . . . , Yn).

(b) Product of independent unit-mean variables (no nonnegativity needed). Let (Zk)k≥1

be independent with E[ |Zk| ] < ∞ and E[Zk] = 1 for all k. Define

Mn :=

n∏
k=1

Zk, n ≥ 1, M0 := 1,

and let Gn = σ(Z1, . . . , Zn). Then (Mn) is a martingale.

(c) Conditional expectation process. Let X be integrable and (Gn)n≥0 a filtration. Define

Mn := E[X | Gn ], n ≥ 0.

Then (Mn) is a martingale with respect to (Gn).

Proof. (a) Adaptedness/integrability: Mn is Gn-measurable as a sum of Gn-measurable random

variables; E|Mn| ≤
∑n

k=1 E|Yk| < ∞. Martingale step:

E[Mn+1 | Gn] = E
[
Mn + Yn+1

∣∣∣Gn

]
= Mn + E[Yn+1 | Gn].

By independence, Yn+1 is independent of Gn, so E[Yn+1 | Gn] = E[Yn+1] = 0. Hence E[Mn+1 |
Gn] = Mn a.s.

(b) Adaptedness/integrability: Mn is Gn-measurable. By independence, E[|Mn|] ≤
∏n

k=1 E[|Zk|] <
∞, so Mn is integrable; likewise Mn+1. Moreover,

E[Mn+1 | Gn] = E[MnZn+1 | Gn] = Mn E[Zn+1] = Mn.

Hence (Mn) is a martingale.

(c) Adaptedness/integrability: By definition, Mn is Gn-measurable and E|Mn| ≤ E|X| < ∞.

Martingale step (tower property):

E[Mn+1 | Gn] = E
[
E[X | Gn+1]

∣∣Gn

]
= E[X | Gn] = Mn a.s.
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5.4 Previsible Processes and Martingale Transforms

We now introduce the notion of previsible processes and use them to define linear transformations

of martingales. These objects provide a rigorous formalization of strategies in stochastic models.

Definition 5.5 (Previsible process). Let (Gn)n≥0 be a filtration. A stochastic process (Cn)n≥1 is

said to be previsible (with respect to (Gn)) if

Cn is Gn−1-measurable for each n ≥ 1.

Equivalently, the choice of Cn may depend on the information available up to and including time

n− 1, but not on the outcome of period n itself.

Definition 5.6 (Martingale transform with initial capital). Let X = (Xn)n≥0 be an integrable

process and C = (Cn)n≥1 a previsible process. For an initial capital Y0 with Y0 ∈ L1 and Y0

G0-measurable, define

(C ·X)n :=

n∑
k=1

Ck (Xk −Xk−1), n ≥ 1, (C ·X)0 := 0,

and set the transformed wealth process

Yn := Y0 + (C ·X)n, n ≥ 0.

Theorem 5.7 (Stability under bounded previsible transforms). Let X = (Xn)n≥0 be a super-

martingale (resp. martingale) with respect to (Gn). Let C = (Cn)n≥1 be previsible and assume there

exists K < ∞ such that

|Cn| ≤ K almost surely for all n ≥ 1.

Let Y0 be G0-measurable and integrable, and define

Yn := Y0 +
n∑

k=1

Ck (Xk −Xk−1), n ≥ 0.

Then (Yn) is a supermartingale (resp. martingale) with respect to (Gn).

Proof. Each increment Ck(Xk − Xk−1) is Gk-measurable, hence Yn is Gn-measurable. We check

integrability:

E[|Yn|] ≤ E[|Y0|] +
n∑

k=1

E
[
|Ck| |Xk −Xk−1|

]
≤ E[|Y0|] +K

n∑
k=1

E[ |Xk|+ |Xk−1| ] < ∞,
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since each Xm is integrable. Thus Yn ∈ L1.

Now compute the conditional expectation. For n ≥ 0,

E[Yn+1 | Gn] = Yn + E[Cn+1(Xn+1 −Xn) | Gn].

By previsibility, Cn+1 is Gn-measurable, so

E[Yn+1 | Gn] = Yn + Cn+1 E[Xn+1 −Xn | Gn].

If X is a supermartingale, the conditional increment is ≤ 0, hence E[Yn+1 | Gn] ≤ Yn. If X is a

martingale, the inequality is an equality.

Gambling story (Consequence)

Interpret (Xn) as the wealth of a unit–stake gambler after n fair games, so (Xn) is a martingale.

A previsible process (Cn) represents the gambler’s strategy for choosing stakes: before each

game, the amount Cn to be bet is decided on the basis of past information Gn−1.

If the gambler’s stakes are bounded (which in practice means the gambler has only finite capital

to risk) then the transformed wealth

Yn = Y0 +
n∑

k=1

Ck (Xk −Xk−1)

remains a martingale.

As long as the gambler cannot stake arbitrarily large amounts, no betting strategy can convert

fair games into a source of systematic profit. The “fairness” of the casino is preserved under

all feasible strategies.

5.5 Stopping Times and Stopped Processes

Throughout this section, for two integers m,n we write m ∧ n := min{m,n}.

Definition 5.8 (Stopping time). Let (Gn)n≥0 be a filtration on (Ω,F ,P). A random variable

T : Ω → N ∪ {∞} is called a stopping time with respect to (Gn) if

{T ≤ n} ∈ Gn for every n ≥ 0.

In other words, by time n it is observable whether or not the stopping time has occurred.

Definition 5.9 (Stopped process). Let X = (Xn)n≥0 be a stochastic process and let T be a

stopping time. The stopped process Z = (Zn)n≥0 is defined by

Zn := Xn∧T , n ≥ 0,
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so that Z coincides with X up to time T and remains constant thereafter.

Theorem 5.10 (Stopped (super)martingales under bounded horizons). Let (Gn)n≥0 be a filtration

and let X = (Xn)n≥0 be a supermartingale (resp. martingale) with respect to (Gn). Let T be a

bounded stopping time, i.e. there exists N < ∞ with T ≤ N almost surely, and define the stopped

process Z = (Zn)n≥0 by

Zn := Xn∧T , n ≥ 0.

Then the following holds:

(i) For each n, the random variable Zn is integrable, i.e. E[|Zn|] < ∞.

(ii) The process Z is a supermartingale (resp. martingale) with respect to (Gn).

Proof. Since T ≤ N almost surely, for each n we have

Zn = Xn∧T ∈ {X0, X1, . . . , Xmin{n,N}}.

This means Zn takes values among finitely many random variables, each of which is integrable

because X is a (super)martingale. Hence E[|Zn|] < ∞, proving (i).Adaptedness of Z follows

immediately from the definition.

For (ii), observe that

E[Zn+1 | Gn] = E[X(n+1)∧T | Gn].

If T ≤ n, then (n+ 1) ∧ T = T = n ∧ T and so X(n+1)∧T = Zn. If T > n, then (n+ 1) ∧ T = n+ 1

and

E[X(n+1)∧T | Gn] = E[Xn+1 | Gn].

Combining the two cases gives

E[Zn+1 | Gn] = Zn 1{T≤n} + E[Xn+1 | Gn]1{T>n}.

If X is a supermartingale then E[Xn+1 | Gn] ≤ Xn, and since Zn = Xn on {T > n} it follows

that E[Zn+1 | Gn] ≤ Zn. If X is a martingale, equality holds. Thus Z inherits the (super)martingale

property, establishing (ii).

Gambling story (Consequence)

Interpret Xn as the wealth of a gambler after n rounds, in a (super)fair game. A stopping

time T models a rule such as “stop once my fortune reaches a target or I fall below a limit,”

with the rule depending only on past outcomes. The theorem says that if such a rule has a

bounded horizon, then the stopped wealth process Zn = Xn∧T preserves the (super)martingale

property. In plain terms: even if the gambler chooses to stop according to a legitimate strategy,

no advantage can be gained on average—the game remains fair (or unfavorable) up to that

stopping time.
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5.5.1 Applications of Optional Sampling

One of the most important uses of the optional sampling theorem is in the analysis of hitting

times for random walks. Let (Sn)n≥0 be a simple symmetric random walk, defined by S0 = 0 and

Sn =
∑n

k=1Wk, where the increments (Wk) are i.i.d. with P(Wk = 1) = P(Wk = −1) = 1/2. The

process (Sn) is a martingale with respect to its natural filtration. Suppose we fix two integers

a < 0 < b and define the stopping time

T := inf{n ≥ 0 : Sn = a or Sn = b}.

That is, T is the first time the walk leaves the open interval (a, b). Since T is bounded above by

the finite number |a|+ b, it is a bounded stopping time. The optional sampling theorem therefore

guarantees that

E[ST ] = E[S0] = 0.

Because ST takes only the values a and b, we obtain

0 = E[ST ] = a · P(ST = a) + b · P(ST = b).

Solving for the probabilities gives

P(ST = b) =
|a|

|a|+ b
, P(ST = a) =

b

|a|+ b
.

This calculation is the classical gambler’s ruin formula: if a gambler begins with zero capital, plays

fair games of ±1, and stops upon reaching either a units of debt or b units of profit, then the

probability of ultimate success is proportional to the distance to ruin.

A second application concerns the expected duration of such fair games. Consider the same ran-

dom walk and stopping time T , but now examine the process (S2
n−n)n≥0. Because the increments

Wk are independent, mean zero, and variance one, the process (S2
n−n) is itself a martingale. To see

this, recall that (Wk) are independent with E[Wk] = 0 and E[W 2
k ] = 1. Write Sn+1 = Sn +Wn+1.

Then

S2
n+1 − (n+ 1) = S2

n + 2SnWn+1 +W 2
n+1 − (n+ 1).

Taking conditional expectation with respect to Gn and using the fact that Wn+1 is independent of

Gn,

E[S2
n+1 − (n+ 1) | Gn] = S2

n + 2SnE[Wn+1] + E[W 2
n+1]− (n+ 1).

Since E[Wn+1] = 0 and E[W 2
n+1] = 1, this reduces to

E[S2
n+1 − (n+ 1) | Gn] = S2

n − n = Mn.
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Hence (Mn)n≥0 is a martingale. Applying the optional sampling theorem at T yields

E[S2
T − T ] = E[S2

0 − 0] = 0.

Since ST equals a or b, we have E[S2
T ] = a2P(ST = a) + b2P(ST = b). Substituting the ruin

probabilities computed above leads to an explicit expression for E[T ]. A short calculation shows

E[T ] = |a| b.

These examples illustrate the general principle: the combination of martingale structure and

stopping times allows one to compute both hitting probabilities and expected hitting times for

random walks. The method requires no delicate combinatorics and avoids recursive difference

equations, relying only on the fundamental identity E[XT ] = E[X0] when X is a martingale and T

is a bounded stopping time. This simplicity is precisely what makes martingale theory indispensable

in probability and in its economic applications.

5.5.2 Important Non-Example: the doubling (“martingale”) strategy

Let (Wn)n≥1 be an i.i.d. sequence with P(Wn = 1) = P(Wn = −1) = 1/2. The simple random walk

Sn =
∑n

k=1Wk is then a martingale with respect to its natural filtration.

Consider now the following strategy. Define the stopping time

T := min{n ≥ 1 : Wn = 1},

and set the previsible stakes

Cn := 2n−1 1{W1=···=Wn−1=−1}, n ≥ 1.

The gambler doubles her stake after each loss and ceases to bet once the first win has occurred.

The corresponding transformed wealth is

Yn :=
T∧n∑
k=1

Ck Wk, n ≥ 0.

On the event {T ≤ n} the first win occurs by time n. In this case the gambler loses 1, 2, 4, . . . , 2T−2

on the successive losses and finally gains 2T−1 on the win, so that Yn = 1. On the complementary

event {T > n} all of the first n outcomes are losses, and the gambler’s wealth is

Yn = − (2n − 1).

It follows that for every finite n,

E[Yn] = 1 · (1− 2−n) +
(
− (2n − 1)

)
· 2−n = 0.
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Thus the doubling strategy preserves mean zero at each finite stage. However, since T < ∞ almost

surely, the sequence (Yn) converges almost surely to YT = 1. Hence

E[YT ] = 1 while lim
n→∞

E[Yn] = 0.

This construction demonstrates that one cannot, in general, interchange limit and expectation.

At finite horizons the strategy yields no expected gain, yet at the random horizon T the expectation

has jumped to one. The apparent paradox arises because the doubling strategy requires unbounded

stakes: each new loss forces the gambler to risk twice as much capital. Mathematically, this breaks

the hypotheses under which optional sampling guarantees preservation of the martingale property.

5.6 Monkeys typing ABRACADABRA

We imagine a monkey typing letters independently and uniformly at random from the 26–letter

alphabet. We ask for the expected number of keystrokes until the sequence of letters

ABRACADABRA

appears for the first time as a contiguous block. Let T denote this random time. Our goal is to

compute E[T ].
This problem has evoked the curiosity of a unit stake gambler and a gambling house. The

gambler believes deeply that the string will appear and the house does not. The gambler starts

a new series of bets at every key stroke (until the string appears). At every key stroke he bets A

appears. If he is right, he wins 26 rupees and continues his series to bet that the next letter is B

but this time he bets his 26 rupees. If he wins, then he recieves 262 rupees and so on. He continues

his series of bets until he loses for the first time. Note that if the game ends at time T, then he has

bet a total of T rupees across T series2 of bets. Now a thorough analysis using optional sampling

theorem yields the answer. Read on.

Mathematically precise setup: Let (Xn)n≥1 be i.i.d. uniform on the 26–letter alphabet, and let

T := inf{n ≥ 11 : (Xn−10, . . . , Xn) = ABRACADABRA}.

For each start time s ≥ 0 consider the run that begins at s: it stakes 1 at time s that Xs+1 = A; if

correct, the stake is multiplied by 26 and is then staked on Xs+2 = B; if correct again, the stake is

multiplied by 26 and staked on Xs+3 = R; and so on, always wagering the entire current fortune on

the next required letter of ABRACADABRA. A wrong letter ends the run at 0; k consecutive correct

letters produce capital 26k. Thus each run is a sequence of sequential fair bets with multiplier 26

on success. A fresh run starts at every time s, so runs overlap in calendar time, but within each

run the bets are strictly sequential.

2Not the record company that messed with pewdiepie lol!
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From the house’s perspective, define its fortune

Hn = H0 + (total stakes received up to time n) − (total payouts made up to time n).

Each stake is 1, each per–letter wager is fair, and runs are independent of the house’s accounting,

so (Hn) is a martingale with respect to the natural filtration. To meet the worst case that the word

appears immediately (in the first 11 letters), the house must be capitalized by

H0 = P − 11, P := 2611 + 264 + 26,

because on that event it will have received 11 units of stakes and must pay the unique surviving

runs: the length–11 run (full word), the length–4 run (suffix/prefix “ABRA”), and the length–1 run

(suffix/prefix “A”).

At the stopping time T , the house has received exactly T units of stakes and must pay precisely

P , since the only runs alive at T are those whose starts align with the borders of ABRACADABRA:

the run from T − 10 has capital 2611, the run from T − 3 has capital 264, and the run from T has

capital 26. Hence

HT = H0 + T − P = T − 11.

By the optional stopping theorem,

E[HT ] = E[H0],

so E[T − 11] = P − 11 and therefore

E[T ] = 2611 + 264 + 26 .

5.7 Markov Chains and Martingales

Let X = (Xn)n≥0 be a time-homogeneous Markov chain with state space S and transition matrix

P = (P (i, j))i,j∈S , defined on a filtered probability space (Ω,F , (Gn),P) with natural filtration

Gn = σ(X0, . . . , Xn).

Proposition 5.11. If f : S → R satisfies

f(i) =
∑
j∈S

P (i, j)f(j), i ∈ S,

then Mn := f(Xn) is a martingale with respect to (Gn).

Proof. For each n ≥ 0,

E[Mn+1 | Gn] = E[f(Xn+1) | Xn] =
∑
j∈S

P (Xn, j)f(j).

If Xn = i, this equals
∑

j P (i, j)f(j) = f(i) = Mn. Hence M is a martingale.
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A function f satisfying the relation above is called harmonic with respect to P . Thus every

harmonic function gives rise to a martingale along the paths of the chain.

5.7.1 Explicit Harmonic Examples and Optional stopping calculations

Example 5.12 (Symmetric random walk: exit probabilities on {0, 1, . . . , N}). Consider the sim-

ple symmetric random walk X = (Xn)n≥0 on the finite state space {0, 1, . . . , N} with absorbing

endpoints 0 and N . That is, for 1 ≤ i ≤ N − 1,

P(Xn+1 = i+ 1 | Xn = i) = P(Xn+1 = i− 1 | Xn = i) = 1
2 ,

while for i ∈ {0, N} one has Xn+1 = Xn = i almost surely.

Define the function

f(i) :=
i

N
, 0 ≤ i ≤ N.

Then for every interior state 1 ≤ i ≤ N − 1,

E[f(Xn+1) | Xn = i] = 1
2f(i+ 1) + 1

2f(i− 1) =
i

N
= f(i).

Thus the process Mn := f(Xn) is a martingale with respect to the natural filtration of the chain.

Let

T := inf{n ≥ 0 : Xn ∈ {0, N}}

denote the first hitting time of the boundary. Since 0 ≤ T ≤ N almost surely, the stopping time T

is bounded. The bounded optional sampling theorem therefore applies, and gives

E[f(XT ) | X0 = x] = f(x), 0 ≤ x ≤ N.

At the stopping time T the chain is absorbed, so XT ∈ {0, N}. Consequently,

f(XT ) =
XT

N
=

0, XT = 0,

1, XT = N,
= 1{XT=N}.

Hence

P(XT = N | X0 = x) = E
[
1{XT=N} | X0 = x

]
= E[f(XT ) | X0 = x] = f(x) =

x

N
.

It follows that

P(XT = N | X0 = x) =
x

N
, P(XT = 0 | X0 = x) = 1− x

N
.

Example 5.13 (Biased random walk: gambler’s ruin probabilities). Consider the nearest–neighbour

random walk X = (Xn)n≥0 on {0, 1, . . . , N} with absorbing states 0 and N . For each interior state
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1 ≤ i ≤ N − 1,

P(Xn+1 = i+ 1 | Xn = i) = p, P(Xn+1 = i− 1 | Xn = i) = q := 1− p,

while Xn+1 = Xn when Xn ∈ {0, N}. Assume throughout that p ̸= q.

Define

f(i) := r i, 0 ≤ i ≤ N, r :=
q

p
.

Verification of the martingale property. For each interior state 1 ≤ i ≤ N − 1,

E[f(Xn+1) | Xn = i] = p ri+1 + q ri−1 = ri(pr + q/r) = ri = f(i).

At the boundaries, if Xn = 0 then Xn+1 = 0 almost surely, so f(Xn+1) = f(0) = 1 = f(Xn).

Similarly, if Xn = N then Xn+1 = N almost surely, so f(Xn+1) = f(N) = rN = f(Xn). Thus

E[f(Xn+1) | Gn] = f(Xn)

for all n, and therefore Mn := f(Xn) is a martingale.

Application of optional sampling. Let

T := inf{n ≥ 0 : Xn ∈ {0, N}}

be the first hitting time of the boundary. Since 0 ≤ T ≤ N almost surely, T is a bounded stopping

time. The optional sampling theorem then yields

E[f(XT ) | X0 = x] = f(x) = rx, 0 ≤ x ≤ N.

At the stopping time T the chain is absorbed, so XT ∈ {0, N}. Consequently

f(XT ) =

1, XT = 0,

rN , XT = N.

Therefore

rx = E[f(XT ) | X0 = x] = P(XT = 0 | X0 = x) · 1 + P(XT = N | X0 = x) · rN .

Solving for the probabilities gives

P(XT = N | X0 = x) =
1− rx

1− rN
, P(XT = 0 | X0 = x) =

rx − rN

1− rN
.

In the limit p → q (so r → 1), these probabilities reduce to those of Example 5.12, namely

P(XT = N | X0 = x) = x/N .

36



5.8 Exercises

Exercise 5.14. Let (Xi)i≥1 be independent random variables with finite expectations and vari-

ances,

E[Xi] = mi, Var(Xi) = σ2
i ,

and set Sn =
∑n

i=1Xi, Fn = σ(X1, . . . , Xn).

1. Find sequences (bn) and (cn) of real numbers such that

S2
n + bnSn + cn

is an (Fn)–martingale.

2. Fix λ ∈ R and assume E[eλXi ] < ∞ for all i. Define Gi(λ) := E[eλXi ]. Find a sequence

(aλn)n≥0 such that

exp
(
λSn − aλn

)
is an (Fn)–martingale.

Exercise 5.15. Let X = (Xn)n≥0 be the simple symmetric random walk on Z with natural

filtration (Fn).

1. Show that the process

Yn := X3
n − 3nXn, n ≥ 0,

is an (Fn)–martingale.

2. Fix N ∈ N and let

τ := inf{n ≥ 0 : Xn ∈ {0, N}}

be the first hitting time of the boundary {0, N}. For 0 ≤ k ≤ N , compute

Ek[τ | Xτ = N ],

where Ek denotes expectation given X0 = k.

Exercise 5.16. Let (Xn)n≥0 be a martingale with respect to (Fn).

1. Show that its increments are pairwise orthogonal, i.e.

E
[
(Xn+1 −Xn)(Xm+1 −Xm)

]
= 0 for all n ̸= m.

2. Suppose in addition that the increments Xn+1 − Xn are {0, 1}–valued or Gaussian. Show

that (Xn) is a random walk.
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Exercise 5.17 (Waiting time for coin patterns). We toss a fair coin repeatedly.

1. Let T be the first time the sequence HTHT appears consecutively. Show that T is almost surely

finite.

2. Consider the process Xn = 2Ln , where Ln is the length of the longest suffix of the first n

tosses that is also a prefix of HTHT. Show that (Xn) is a martingale.

3. Use the martingale (Xn) and the optional stopping theorem at T to compute E[T ].

4. Among all 16 patterns of length 4, give an example of one with the maximal expected waiting

time. (Hint: compare patterns with and without overlaps.)
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6 Martingales in Financial Markets

Financial markets are built on uncertainty. Prices move with news, information, and chance. The

question we face is: how can such random movements be understood mathematically, and how do

we decide what a fair price for a risky asset should be?

Two results form the backbone of modern asset pricing:

• The first is the fundamental pricing equation

pt = Et[mt+1xt+1],

which says that today’s price of an asset equals the conditional expectation of its payoff

tomorrow, weighted by a random variable mt+1 called the stochastic discount factor. This

single formula captures both the time value of money and the adjustment for risk.

• The second is the Fundamental Theorem of Asset Pricing (FTAP). It tells us that the simple

requirement of “no arbitrage” is exactly the same as the existence of a probability measure

under which discounted asset prices are martingales. In other words, if there are no free

lunches in the market, then prices evolve as fair games once we account for the numéraire.

The first equation comes from economics: it is the condition that arises when agents with

preferences over consumption choose optimally between today and tomorrow. The second comes

from probability and convex geometry: it shows that the martingale property of discounted prices

is forced by the absence of arbitrage.

The aim of this chapter is to connect these two points of view. We will move in small steps:

1. Start with risk preferences and utility, using Jensen’s inequality to explain risk aversion,

neutrality, and seeking.

2. Derive the pricing equation pt = Et[mt+1xt+1] from a simple two–period optimisation prob-

lem.

3. Work through examples such as bonds and stocks with dividends.

4. Introduce convex sets and a separation result, which provide the mathematical language

needed for arbitrage arguments.

5. State and prove the Fundamental Theorem of Asset Pricing in discrete time, showing how

martingales enter naturally.

In this way we pass from economic intuition about preferences to the precise mathematical

structure that underlies modern finance.

6.1 Risk Preferences and Utility

We begin by recalling how preferences over random payoffs can be described. The basic objects of

choice are lotteries, that is, random variables representing uncertain consumption or wealth.

39



6.1.1 Definitions

Definition 6.1 (Lottery). A lottery is a random variable X on a probability space (Ω,F ,P), taking
values in R+ and representing a nonnegative payoff.

Definition 6.2 (Expected Utility Representation). Let ⪰ denote the agent’s preference relation

on lotteries, where X ⪰ Y means that the lottery X is weakly preferred to the lottery Y (the agent

likes X at least as much as Y ).

An agent is said to have an expected utility representation if there exists a function u : R+ → R,
called the utility function, such that for any two lotteries X,Y one has

X ⪰ Y ⇐⇒ E[u(X)] ≥ E[u(Y )].

Throughout this chapter, we will assume an expected utility representation exists for the agents

we are interested in3.

Definition 6.3 (Risk Preferences). Let X be a lottery with mean µ = E[X].

1. The agent is risk averse if

u(µ) ≥ E[u(X)].

In words: the utility of receiving the mean payoff for sure is at least as large as the expected

utility of the risky payoff.

2. The agent is risk neutral if

u(µ) = E[u(X)],

i.e. the agent cares only about the mean payoff, not about the distribution around it.

3. The agent is risk seeking if

u(µ) ≤ E[u(X)].

That is, the agent prefers risk to certainty with the same expected payoff.

For whatever follows, we need Jensens inequality. We state it here instead of the appendix

because this inequality is of independent interest.

Theorem 6.4 (Jensen’s Inequality). Let u : R → R be convex, and let X be an integrable random

variable. Then

u(E[X]) ≤ E[u(X)].

If u is concave, the inequality is reversed:

u(E[X]) ≥ E[u(X)].
3The fact that such a representation exists is the content of the von Neumann–Morgenstern utility theorem. It

states that if an agent’s preferences over lotteries satisfy certain axioms (completeness, transitivity, continuity, and
independence), then there exists a utility function u unique up to positive affine transformations such that the
preferences can be written in the expected utility form above.
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So now we can connect the risk taking behaviour to the curvature of the utility function.

Proposition 6.5. Let X be a lottery with finite expectation, and suppose an agent’s preferences

are represented by an expected utility function u : R+ → R. Then:

1. If u is concave, the agent is risk averse, i.e.

u
(
E[X]

)
≥ E[u(X)].

2. If u is affine (linear up to a constant), the agent is risk neutral, i.e.

u
(
E[X]

)
= E[u(X)].

3. If u is convex, the agent is risk seeking, i.e.

u
(
E[X]

)
≤ E[u(X)].

Proof. This follows directly from Jensen’s inequality. If u is concave, u(E[X]) ≥ E[u(X)], which

is precisely the definition of risk aversion. If u is affine, Jensen’s inequality holds with equality,

showing risk neutrality. If u is convex, the inequality reverses, showing risk seeking.

Example 6.6 (Lottery vs. Sure Payoff). Consider a lottery that pays

X =


100 with probability 1

2 ,

0 with probability 1
2 .

The expected value is E[X] = 50. Compare this lottery to the sure payoff Y = 50.

1. Risk averse agent. Let u(c) =
√
c (a concave utility). Then

u(E[X]) = u(50) ≈ 7.07, E[u(X)] = 1
2u(100) +

1
2u(0) =

1
2 · 10 + 1

2 · 0 = 5.

Since u(E[X]) > E[u(X)], the agent prefers the sure payoff of 50.

2. Risk neutral agent. Let u(c) = c (linear utility). Then

u(E[X]) = u(50) = 50, E[u(X)] = 1
2 · 100 + 1

2 · 0 = 50.

The agent is indifferent between the lottery and the sure payoff.

3. Risk seeking agent. Let u(c) = c2 (a convex utility). Then

u(E[X]) = u(50) = 2500, E[u(X)] = 1
2 · 1002 + 1

2 · 02 = 5000.

Since u(E[X]) < E[u(X)], the agent prefers the risky lottery to the certain payoff.
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6.2 Pricing a Risky Asset

We describe a simple two–period economy with uncertainty at date t+ 1.

• The agent receives exogenous endowments et and et+1 of the single consumption good at

times t and t + 1 respectively. These are random variables defined on a probability space

(Ω,F ,P).

• Preferences are represented by

U(ct, ct+1) = u(ct) + β Et[u(ct+1)],

where u : R+ → R is strictly increasing, strictly concave, and continuously differentiable, and

β ∈ (0, 1) is the subjective discount factor.

• There is a risky asset that costs pt units of the good at time t and delivers a random payoff

xt+1 units of the good at time t+ 1. If the agent buys q ∈ R units of the asset, consumption

is

ct = et − ptq, ct+1 = et+1 + qxt+1.

Theorem 6.7 (Fundamental Pricing Equation). In the economy described above, any optimal

choice q∗ satisfies the first–order condition

ptu
′(ct) = β Et

[
u′(ct+1)xt+1

]
.

Equivalently, the equilibrium price of the asset is given by

pt = Et

[
mt+1xt+1

]
,

for a suitable random variable mt+1.

Proof. The agent chooses q to maximise

U(q) := u(et − ptq) + β Et

[
u(et+1 + qxt+1)

]
.

By differentiability of u, the derivative is

U ′(q) = −ptu
′(et − ptq) + β Et

[
u′(et+1 + qxt+1)xt+1

]
.

At an optimum q∗ we require U ′(q∗) = 0, so

ptu
′(ct) = β Et

[
u′(ct+1)xt+1

]
.

42



Dividing through by u′(ct) > 0 gives

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
,

as claimed.

Remark 6.8 (Interpretation of the factor m in Theorem 6.7). In the utility maximisation setup

above, the stochastic discount factor

mt+1 = β
u′(ct+1)

u′(ct)

is proportional to the marginal rate of substitution across time. It measures how much the agent

is willing to give up of certain consumption at date t in exchange for one additional unit of con-

sumption in a particular state at date t+ 1. A payoff that delivers more consumption precisely in

states where mt+1 is high is valued more highly, because consumption in those states is especially

valuable to the agent.

Remark 6.9 (Generality of the Pricing Equation). The formula mt+1 = βu′(ct+1)/u
′(ct) arises

from this specific two–period consumption model. In general financial theory, however, one does not

need to assume a particular utility function or even the existence of a representative agent. What

matters is the existence of some strictly positive random variable mt+1 such that the fundamental

relation

pt = Et[mt+1xt+1]

holds for every traded asset. Any such m is called a stochastic discount factor.

Definition 6.10 (Fundamental Pricing Equation). The fundamental pricing equation states that

for any asset with price pt at time t and payoff xt+1 at time t+1, there exists a stochastic discount

factor mt+1 > 0 such that

pt = Et[mt+1xt+1].

6.2.1 Examples and Special Cases

Example 6.11 (Riskfree bond). Suppose there is a one–period riskfree bond. Its price at time t

is pft , and it pays a deterministic gross return 1 + r at time t+ 1. Thus the payoff is xft+1 = 1 + r.

Applying the fundamental pricing equation gives

pft = Et[mt+1x
f
t+1] = (1 + r)Et[mt+1].

Normalising the bond to have unit price today (pft = 1), we obtain

Et[mt+1] =
1

1 + r
.
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Example 6.12 (Risk–neutral agent). If the agent is risk neutral, then the marginal utility u′ is

constant. In this case the stochastic discount factor is simply

mt+1 = β (a constant).

From the riskfree bond example we then have

β =
1

1 + r
.

For any asset with payoff xt+1, the pricing equation reduces to

pt = Et[βxt+1]. (1)

where β is given above.

Thus under risk neutrality, the price is the expected payoff discounted at the riskfree rate. This

is the pricing equation seen by a risk neutral agent.

Example 6.13 (Stock with dividends). Consider a stock with ex–dividend price pt at time t,

dividend dt+1 paid between t and t+ 1, and ex–dividend price pt+1 at time t+ 1. The payoff from

holding the stock for one period is

xt+1 = pt+1 + dt+1.

The fundamental pricing equation then gives

pt = Et

[
mt+1(pt+1 + dt+1)

]
.

This shows that today’s price reflects both the expected discounted capital gain (pt+1) and the

expected discounted dividend (dt+1). In particular, the presence of dividends simply enters the

payoff term, and the same pricing relation continues to hold.

Example 6.14 (European call option). Let (St)t≥0 denote the price process of a stock, with St > 0

for all t. Fix a strike price K > 0 and maturity date t + 1. The payoff of a European call option

written on S is the random variable

xcallt+1 := (St+1 −K)+ = max{St+1 −K, 0}.

Applying the fundamental pricing equation gives

pcallt = Et

[
mt+1 x

call
t+1

]
= Et

[
mt+1 (St+1 −K)+

]
.

Thus the option price is the expected discounted payoff, where the nonlinearity of the payoff

function s 7→ (s − K)+ distinguishes options from bonds and stocks. The same pricing relation

applies uniformly to this case, only the payoff xt+1 changes.
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Exercise 6.15 (Lucas exchange economy: deriving the price recursion). Consider a one–good,

pure exchange economy in discrete time. The good is perishable. There are n productive units;

unit i produces random output Yit at time t, and we write yt = (Y1t, . . . , Ynt). The process (yt) is

Markov with transition density f(y′|y). A representative consumer has preferences

E

[ ∞∑
t=0

βtU(ct)

]
, 0 < β < 1,

with U : R+ → R strictly increasing and strictly concave.

At each t, let pt = (p1t, . . . , pnt) be the ex–dividend price vector. Let qit denote the number of

shares of unit i held after trading at time t (so qi,t−1 are the beginning–of–period holdings at t).

One share of unit i pays dividend Yit at t.

Notation. For vectors a, b ∈ Rn write a · b :=
∑n

i=1 aibi.

1. Market clearing. In a representative–agent equilibrium the net supply of each share is one

and all output is consumed:

qit = 1 for all i, t, ct =

n∑
i=1

Yit for all t.

2. One–period problem at state y. Fix a current state y and a price function p(·) mapping

states to ex–dividend prices. Given beginning–of–period holdings z ∈ Rn (these are the

qi,t−1), the consumer chooses current consumption c and end–of–period holdings x ∈ Rn to

solve

max
c≥0, x∈Rn

U(c) + β

∫
v(x, y′) f(y′|y) dy′

subject to the flow budget constraint

c+ p(y) · x = y · z︸︷︷︸
dividends

+ p(y) · z︸ ︷︷ ︸
value of current portfolio

.

Here v(x, y′) is the continuation value at next state y′ when future prices follow p(·).

3. First–order conditions. Let λ be the multiplier on the flow budget. Show that any solution

satisfies

U ′(c) = λ, λ pi(y) = β

∫
∂v

∂xi
(x, y′) f(y′|y) dy′ (i = 1, . . . , n).

4. Marginal value of an extra share. Suppose the agent carries one additional share of unit

i into period t+ 1, holding everything else fixed. Show that this increases resources in state

y′ by

pi(y
′) + Y ′

i ,
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since the share pays its dividend Y ′
i and can then be sold for its ex–dividend price pi(y

′).

Deduce that the marginal increase in utility is

∂v

∂xi
(z, y′) = U ′(c′(y′)) (pi(y

′) + Y ′
i ).

5. Price recursion (general form). From the first–order and envelope conditions we have,

for each i,

pi(y) =

∫
β
U ′(c′(y′))

U ′(c(y))

(
pi(y

′) + Y ′
i

)
f(y′|y) dy′.

Define the stochastic discount factor

m(y, y′) := β
U ′(c′(y′))

U ′(c(y))
.

Then the recursion becomes

pi(y) = E
[
m(y, y′)

(
pi(y

′) + Y ′
i

) ∣∣ y] ,
which is exactly the fundamental pricing equation p = E[mx] with x′i = pi(y

′)+Y ′
i the payoff

of share i next period.

Equilibrium form. Imposing market clearing c(y) =
∑n

j=1 yj and c′(y′) =
∑n

j=1 y
′
j gives

pi(y) = E

β U ′
(∑n

j=1 y
′
j

)
U ′

(∑n
j=1 yj

) (
pi(y

′) + Y ′
i

) ∣∣∣∣∣∣ y
 ,

the Lucas pricing recursion.

6. Risk–neutral special case. In the special case of risk-neutral agents, we can work out the

solution to the recursion. If U is linear, U ′(c) is constant. Show that the recursion reduces to

pi(y) = β E[ pi(y′) + Y ′
i | y ],

and hence

pi(y) =
∞∑
s=1

βs E[Yi,t+s | yt = y ],

the discounted expected present value of dividends.

Remark 6.16 (Transversality condition). In infinite–horizon models the Euler equations are not

enough: we also need to rule out paths where the consumer accumulates wealth or debt without

bound. This is expressed by the transversality condition

lim
T→∞

E
[
βTU ′(cT ) pi(yT ) qiT

]
= 0 for each asset i.
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In words: as time goes to infinity, the expected marginal utility value of the portfolio position

in any asset must vanish. Otherwise the consumer could improve utility by shifting resources

arbitrarily far into the future4. The condition simply ensures that the present value of wealth does

not explode, so the optimisation problem remains well defined.

Lucas’s model showed how asset prices can be derived in general equilibrium when consumption

is stochastic and agents are risk averse. The key insight is that prices must satisfy the same fun-

damental pricing relation p = E[mx], with the stochastic discount factor mt+1 = βU ′(ct+1)/U
′(ct)

tied to marginal utility growth. In the special case of risk neutrality, prices reduce to discounted

expected present values and discounted prices are martingales. With risk aversion, however, raw

prices need not follow martingales; instead, it is the marginal–utility–weighted payoffs that exhibit

the martingale property. This clarified why simple martingale models of stock prices are insufficient,

and why risk and preferences must enter any coherent theory of asset pricing.

6.3 Equivalent Measures and Risk–Neutral Measures

Up to now, we have written the pricing equation in terms of the stochastic discount factor mt+1:

pt = Et[mt+1xt+1].

It is often convenient to rewrite this in terms of a change of probability measure.

Equivalent measures

Let Ω be a finite sample space with reference probability P. A second probability measure Q on Ω

is called equivalent to P if they assign zero probability to exactly the same events:

Q(ω) = 0 ⇐⇒ P(ω) = 0 for all ω ∈ Ω.

Example 6.17. Suppose Ω = {ω1, ω2} with P(ω1) = 0.3, P(ω2) = 0.7. If we define Q(ω1) = 0.6,

Q(ω2) = 0.4, then Q is equivalent to P (both assign positive probability to both states). But if

Q(ω1) = 1, Q(ω2) = 0, then Q is not equivalent, because Q rules out an event that P considers

possible.

6.3.1 Interpretation of equivalent measures

Why do we introduce a new probability measure Q when we already have the physical probabilities

P? The reason is that in markets, payoffs are not valued using physical likelihoods alone. Agents

are risk averse, so they attach extra weight to outcomes where consumption is scarce and marginal

utility is high. The stochastic discount factor m exactly encodes these adjustments, and defining

4Usually this shifting strategy is called a Ponzi Scheme and the transversality condition is called a “No Ponzi
scheme condition.”
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Q is a convenient way to incorporate them: under Q, asset prices look like simple discounted

expectations.

In practice, this means that an event which is very painful in terms of consumption (say, a

recession) receives a higher weight under Q than under P. Conversely, an event that occurs in

“good times,” when consumption is plentiful and marginal utility is low, is downweighted under Q.

Thus Q is sometimes called the risk–adjusted or pricing measure: it reflects how markets collectively

price states, not how often those states physically occur.

Example 6.18 (Risk adjustment and equivalent measure in a two–state Lucas economy). Two

dates t and t+ 1. At t+ 1 there are two states H and T with physical probabilities

P(H) = P(T ) = 1
2 .

There is one perishable good and complete one–period markets. Take the riskfree rate r = 0 (so

discount factor is 1 for simplicity).

Endowment and preferences. Aggregate endowment at t+ 1 is

C(H) = 4, C(T ) = 1,

so the economy is “good” in H and “bad” in T . Assume that the preferences are represented by a

(representative) agent with log utility,

U(c) = log c.

State prices and the risk–adjusted measure. With log utility, the one–period stochastic

discount factor is proportional to inverse aggregate consumption:

m(H) ∝ 1

C(H)
, m(T ) ∝ 1

C(T )
.

State prices are

π(s) = β P(s)m(s), s ∈ {H,T}.

With β = 1 and the normalization
∑

s π(s) =
1

1+r = 1, we get

π(H) ∝ 1
2 · 1

4 = 1
8 , π(T ) ∝ 1

2 · 1 = 1
2 ,

so scaling by k so that π(H) + π(T ) = 1 (note 1
8 + 1

2 = 5
8) gives k = 8

5 and hence

π(H) = 8
5 · 1

8 = 1
5 = 0.2, π(T ) = 8

5 · 1
2 = 4

5 = 0.8.

Because r = 0, the risk–neutral (equivalent) measure coincides with the normalized state prices:

Q(H) = 0.2, Q(T ) = 0.8.
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Observe that Q and P are equivalent (same null sets), but Q puts more weight on the bad state T

and less on the good state H. This is the risk adjustment.

Now a natural question is how do we price a physically fair gamble. So consider a wager that

pays $2 in H and $0 in T . Under P its expected payoff is $1, so $1 looks “fair” under physical

probabilities. In Lucas economy equilibrium, the price is the risk–adjusted expectation (here r = 0

so no discount):

p = EQ[x] = 2 ·Q(H) + 0 ·Q(T ) = 2 · 0.2 = 0.4.

Thus the market’s fair price is $0.40, not $1. The high–state payoff is downweighted because

consumption is plentiful in H (low marginal utility), and upweighted in T where consumption is

scarce (high marginal utility).

In the context of asset pricing, equivalent measures formalize the idea that markets weight

states by risk, not just by frequency. Here Q shifts probability mass toward the low–consumption

state. “Fair under P” need not be fair in prices; the correct benchmark is Q.

6.3.2 Equivalent and risk–neutral measures in asset pricing

Example 6.12 notes the general formula for asset pricing seen by a risk neutral agent. So we are

motivated to define a risk neutral measure as follows:

Definition 6.19 (Risk–neutral measure). A probability measure Q equivalent to P is called

risk–neutral if, under Q, every asset price equals the discounted expected payoff:

pt =
1

1 + r
EQ
t [xt+1].

The next theorem is important because it separates the economics of preferences from the

mathematics of pricing. In general, asset prices reflect two ingredients:

• The underlying economics of the environment, such as utility functions of agents and the

stochastic process of dividends or endowments. These determine the stochastic discount

factor.

• The payoff structure of the asset itself. For example, a bond has a simple payoff, while an

option has a more complicated payoff that depends on the price of an underlying stock (See

Example 6.14).

The theorem below shows that the economic content of the stochastic discount factor can

be absorbed into a new probability measure. Once this change of measure is made, theorems of

finance can be developed in a risk neutral world, where asset prices are just discounted expectations

of payoffs. This separation allows us to study pricing results without carrying the utility and

endowment structure explicitly.
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Theorem 6.20 (Risk–neutral pricing). Let xt+1 be the payoff of an asset at t+ 1 with price pt at

time t. Suppose the pricing equation

pt = Et[mt+1xt+1]

holds for some strictly positive stochastic discount factor mt+1. Then there exists a risk neutral

probability measure Q equivalent to P. In other words,

pt =
1

1 + r
EQ
t [xt+1],

where 1 + r is the gross riskfree return.

Proof. Define Q by

Q(ω) =
mt+1(ω)

Et[mt+1]
P(ω).

This is a probability measure equivalent to P, since mt+1 > 0 and the normalisation ensures∑
ω Q(ω) = 1. Then

pt = Et[mt+1]EQ
t [xt+1].

For the riskfree asset with payoff 1 + r, the pricing equation gives

1 = (1 + r)Et[mt+1],

so Et[mt+1] = 1/(1 + r). Substituting yields

pt =
1

1 + r
EQ
t [xt+1],

as claimed.

Example 6.21 (Risk–neutral pricing in a two–state model). Fix a time t. Suppose there are two

possible states at t+ 1, called H (“high”) and L (“low”).

• The stock price at time t is denoted St = s, a positive real number.

• At time t+ 1 the stock price will be either

St+1(H) = us, St+1(L) = ds,

where u > 1 and 0 < d < 1 are given constants.

• The riskfree gross return is R = 1 + r > 0, so one unit invested in the bond at t yields R

units at t+ 1.

• We write xt+1 for the payoff of an asset at t+ 1.
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Risk–neutral measure. The risk–neutral pricing theorem states that there exists a probability

measure Q equivalent to the physical measure P such that

pt =
1

R
EQ
t [xt+1].

For the stock itself, the payoff is xt+1 = St+1. The condition becomes

s =
1

R

(
Q(H)us+Q(L) ds

)
.

Computation. Dividing through by s > 0, we find

1 =
1

R

(
qu+ (1− q)d

)
,

where q := Q(H) and Q(L) = 1− q. Hence

q =
R− d

u− d
, 1− q =

u−R

u− d
.

Stock price recursion. Once Q is determined, the stock price at time t satisfies

St =
1

R
EQ
t [St+1] =

1

R

(
q us+ (1− q) ds

)
.

This matches the starting condition and confirms that the risk–neutral measure is consistent with

stock and bond prices.

Remark 6.22. This example shows how the risk–neutral measure Q absorbs all the economic

content of preferences and endowments. Once Q is known, the price of any payoff can be computed

as a discounted expectation. More complicated securities, such as options, can be handled in exactly

the same way by changing only the payoff xt+1.

6.4 Fundamental Theorem of Asset Pricing

We have to get comfortable with convex geometry language in order to locate probability mass

functions with required properties. We will explain at the end of the section.

6.4.1 Convex Geometry Preliminaries

Definition 6.23 (Convex Combination). Given points x1, . . . , xn in Rd, a convex combination is

a linear combination

λ1x1 + · · ·+ λnxn

with coefficients λi ≥ 0 and
∑n

i=1 λi = 1.
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Definition 6.24 (Convex Set). A set C ⊂ Rd is convex if for all x, y ∈ C and λ ∈ [0, 1],

λx+ (1− λ)y ∈ C.

Definition 6.25 (Convex hull). Given a set A ⊂ Rd, the convex hull of A, denoted conv(A), is the

smallest convex set containing A. Equivalently, it is the set of all convex combinations of finitely

many points of A:

conv(A) =

{
n∑

i=1

λixi : n ∈ N, xi ∈ A, λi ≥ 0,
n∑

i=1

λi = 1

}
.

Example 6.26. Convex hulls in the plane

1. If A = {x1, . . . , xm} ⊂ R2 is a finite set of points, then conv(A) is the polygon with vertices

among the xi.

2. If A is the unit circle in R2, then conv(A) is the closed unit disc.

These examples show that convex hulls “fill in” the shape generated by a set of points.

The following theorem is key in proving FTAP.

Theorem 6.27 (Hyperplane Separation). Let C ⊂ Rd be a nonempty convex set and let x /∈ C.

Then there exists a nonzero vector y ∈ Rd such that

y · x < 0 and y · z ≥ 0 for all z ∈ C.

6.4.2 Trading Setup

Fix a finite filtered space (Ω,F , (Ft)
T
t=0,P). Each Ft is a finite partition of Ω into atoms. There

are d assets with discounted price processes Ŝi = (Ŝi
t)

T
t=0, adapted and real–valued. Short sales are

allowed.

A quick note about the atoms of the sigma algebras: For an atom A ∈ Ft, the vector

ŝt(A) :=
(
Ŝ1
t (ω), . . . , Ŝ

d
t (ω)

)
is constant on A,

so we may treat ŝt(A) ∈ Rd unambiguously.

If A ∈ Ft−1 is an atom of Ft−1, then Ft refines Ft−1, so A can be written as a disjoint union of

atoms of Ft. Denote these atoms by A1, . . . , Am, so that

A = A1 ∪ · · · ∪Am, Aj ∈ Ft, Aj ⊆ A.

We call A1, . . . , Am the descendants (or “children”) of A at time t. Define the one–step feasible set

C(A) := conv
{
ŝt(A1), . . . , ŝt(Am)

}
⊂ Rd.
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Next, we set up the basic objects of discrete–time trading.

Definition 6.28 (Trading strategy). Fix d assets with discounted price processes Ŝi = (Ŝi
t)

T
t=0,

adapted to the filtration (Ft)
T
t=0.

A trading strategy is a sequence

ϕ = (ϕt)
T
t=1, ϕt = (ϕ1

t , . . . , ϕ
d
t ),

such that for each t = 1, . . . , T ,

ϕt : Ω → Rd

is Ft−1–measurable (so the holdings at time t are determined by information available at time t−1);

We call such a process previsible.

The real number ϕi
t(ω) is interpreted as the number of units of asset i held during the period

(t− 1, t] in state ω. Note that short selling is allowed since we have allowed negative numbers.

Definition 6.29 (Discounted portfolio value). Let ϕ = (ϕt)
T
t=1 be a trading strategy, where ϕt =

(ϕ1
t , . . . , ϕ

d
t ) and each ϕi

t is Ft−1–measurable. The associated discounted portfolio value process is

the adapted process (V̂t)
T
t=0 defined by

V̂t(ω) :=
d∑

i=1

ϕi
t(ω) Ŝ

i
t(ω), t = 1, . . . , T,

with initial value V̂0 ∈ R given.

Remark 6.30. Mathematically, V̂t is a random variable on Ω, measurable with respect to Ft.

Financially, it represents the value at time t of a portfolio that holds ϕi
t units of each asset i. The

choice of ϕt depends only on information up to t − 1, while the valuation uses the asset prices Ŝi
t

realized at time t.

Definition 6.31 (Self–financing strategy). Fix d discounted asset price processes

Ŝi = (Ŝi
t)

T
t=0, i = 1, . . . , d,

adapted to the filtration (Ft)
T
t=0.

Let ϕ = (ϕt)
T
t=1, where ϕt = (ϕ1

t , . . . , ϕ
d
t ) is a trading strategy. The associated discounted

portfolio value is

V̂t :=

d∑
i=1

ϕi
t Ŝ

i
t , t = 0, 1, . . . , T.

We say that ϕ is self–financing if

V̂t − V̂t−1 =
d∑

i=1

ϕi
t

(
Ŝi
t − Ŝi

t−1

)
, t = 1, . . . , T.
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Remark 6.32. The self–financing condition means that changes in portfolio value come entirely

from changes in asset prices. In financial terms, the agent never adds or withdraws money from

outside the system: wealth evolves only by gains and losses on existing positions.

In any financial model we study, we reject the possibility of arbitrage. Intuitively, an arbitrage is

a trading strategy that starts with no initial cost, never loses money in any state of the world, and

yet produces a strictly positive payoff with positive probability. In other words, it is a “free lunch”:

something for nothing. We assume such opportunities cannot persist in competitive markets, and

their exclusion is the cornerstone assumption behind the Fundamental Theorem of Asset Pricing.

We need to make a precise definition of it now.

Definition 6.33 (Local arbitrage). Fix t ∈ {1, . . . , T} and an atom A ∈ Ft−1. A vector y ∈ Rd is

called a local arbitrage on A if

y · Ŝt−1(ω) < 0 for all ω ∈ A,

and

y · Ŝt(ω) ≥ 0 for all ω ∈ A,

with strict inequality for at least one ω ∈ A.

Remark 6.34. Mathematically, this means: given the information available at time t− 1 (repre-

sented by the atom A), there exists a portfolio y whose discounted cost is strictly negative at t− 1,

while its payoff at t is almost surely nonnegative and strictly positive in at least one descendant of

A.

Financially, a local arbitrage is an arbitrage opportunity that can be recognised and executed

based only on the information available at time t− 1. It is the one–step building block of a global

arbitrage strategy.

6.4.3 The Fundamental Theorem

In this section, we prove the theorem in a series of lemmas.

Lemma 6.35 (No local arbitrage ⇒ convex inclusion). Fix t ∈ {1, . . . , T} and A ∈ Ft−1. If there

is no one–step arbitrage on A, then

ŝt−1(A) ∈ C(A).

Proof. If ŝt−1(A) /∈ C(A), the hyperplane separation lemma (homogeneous form) gives y ̸= 0 with

y · ŝt−1(A) < 0 and y · z ≥ 0 for all z ∈ C(A).

In particular y · ŝt(Aj) ≥ 0 for all children Aj , with strict > for some child because separation is

strict. This y is a one–step arbitrage on A, a contradiction.

54



Lemma 6.36. If ŝt−1(A) ∈ C(A), then there exist numbers q(A → Aj) ≥ 0 with
∑m

j=1 q(A →
Aj) = 1 such that

ŝt−1(A) =
m∑
j=1

q(A → Aj) ŝt(Aj).

Proof. This is the definition of a convex combination in a convex hull. The coefficients are the

convex combination coefficients of ŝt−1(A) with respect to the vertices ŝt(Aj).

Lemma 6.37 (Consistent path measure). Assume Lemma 6.35 holds for every t and every A ∈
Ft−1. For each such A, choose coefficients q(A → Aj) ≥ 0 with

∑m
j=1 q(A → Aj) = 1 such that

ŝt−1(A) =

m∑
j=1

q(A → Aj) ŝt(Aj),

where A1, . . . , Am are the descendants of A. Define Q on atoms A(T ) ∈ FT by

Q
(
A(T )

)
:=

T∏
t=1

q
(
A(t−1) → A(t)

)
,

where A(t) is the unique ancestor of A(T ) in Ft. Then Q is a probability measure on Ω equivalent

to P.

Proof. By construction each q(A → Aj) ≥ 0 and the coefficients from any A sum to one. Thus the

product measure Q assigns nonnegative weights to all terminal atoms, and the total mass is one.

If all coefficients are strictly positive, then Q(ω) > 0 for every ω ∈ Ω, hence Q ∼ P since P(ω) > 0

as well. If some coefficients vanish, Q may give zero weight to certain atoms; this can be avoided

by choosing convex combinations that place strictly positive weight on each descendant whenever

possible (which holds whenever ŝt−1(A) lies in the relative interior of C(A)). In finite models this

adjustment is always possible, and does not affect the argument.

Lemma 6.38 (Discounted prices are Q–martingales). With Q as in Lemma 6.37, for each asset i

and each t ≥ 1,

EQ

[
Ŝi
t | Ft−1

]
= Ŝi

t−1.

Proof. Fix A ∈ Ft−1. By construction of Q,

EQ

[
Ŝi
t | A

]
=

m∑
j=1

q(A → Aj) Ŝ
i
t(Aj).

Stacking over i = 1, . . . , d and using Lemma 6.36, the vector of conditional expectations equals

ŝt−1(A), i.e. Ŝ
i
t−1 on A.

6.4.4 The theorem

Finally we are ready to prove the fundamental theorem of asset pricing.
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Theorem 6.39 (FTAP in finite discrete time). The following are equivalent:

1. No arbitrage: there is no self–financing strategy ϕ with V̂0 = 0, V̂T ≥ 0 P–a.s., and P(V̂T >

0) > 0.

2. Equivalent martingale measure: there exists a probability measure Q ∼ P such that each

discounted price process Ŝi = (Ŝi
t)

T
t=0 is a Q–martingale.

Proof. (i) ⇒ (ii). Assume (i). Fix t ∈ {1, . . . , T} and an atom A ∈ Ft−1. If ŝt−1(A) /∈ C(A), then

by the hyperplane separation lemma there exists y ∈ Rd \ {0} with

y · ŝt−1(A) < 0 and y · z ≥ 0 for all z ∈ C(A).

In particular y · ŝt(Aj) ≥ 0 for every descendant Aj , with strict > for at least one, so y is a one–step

arbitrage on A (by the definition of local arbitrage). Pasting such a one–step arbitrage along the

tree yields a global arbitrage, contradicting (i). Hence for every t and A ∈ Ft−1 we must have

ŝt−1(A) ∈ C(A).

This is Lemma 6.35.

For each t and A ∈ Ft−1 choose coefficients of a convex combination q(A → Aj) ≥ 0 with∑
j q(A → Aj) = 1 such that

ŝt−1(A) =
∑
j

q(A → Aj) ŝt(Aj),

as in Lemma 6.36. Define Q on terminal atoms by the product

Q
(
A(T )

)
:=

T∏
t=1

q
(
A(t−1) → A(t)

)
,

where A(t) is the ancestor of A(T ) in Ft. By Lemma 6.37, Q is a probability measure on Ω and

Q ∼ P. Finally, by Lemma 6.38, for each asset i and each t ≥ 1,

EQ

[
Ŝi
t | Ft−1

]
= Ŝi

t−1,

so each discounted price process is a Q–martingale. This proves (ii).

(ii) ⇒ (i). Assume (ii). Let ϕ = (ϕt)
T
t=1 be a self–financing strategy with V̂0 = 0 and discounted

value process (V̂t)
T
t=0. By the self–financing identity,

V̂t − V̂t−1 =

d∑
i=1

ϕi
t

(
Ŝi
t − Ŝi

t−1

)
, t = 1, . . . , T.

Taking Q–conditional expectations and using that ϕt is Ft−1–measurable (predictable) while each

56



Ŝi is a Q–martingale, we obtain

EQ

[
V̂t | Ft−1

]
= V̂t−1 +

d∑
i=1

ϕi
t EQ

[
Ŝi
t − Ŝi

t−1 | Ft−1

]
= V̂t−1.

Thus (V̂t) is a Q–martingale with V̂0 = 0, so EQ[V̂T ] = 0. If V̂T ≥ 0 P–a.s. and P(V̂T > 0) > 0,

then, by Q ∼ P, we also have Q(V̂T > 0) > 0, which forces EQ[V̂T ] > 0, a contradiction. Hence no

such strategy exists and (i) holds.

6.4.5 Applications

Example 6.40 (One–period binomial model). A stock has current price S0 = 100. At time 1 it

can go up to S1 = 120 or down to S1 = 80. The riskfree rate is r = 0.05, so 1 + r = 1.05.

Absence of arbitrage requires that there exist a probability q ∈ (0, 1) such that

S0

1
=

1

1.05

(
q · 120 + (1− q) · 80

)
.

Solving gives q = 1.05·100−80
120−80 = 0.625.

Thus under the risk–neutral measure Q,

Q(S1 = 120) = 0.625, Q(S1 = 80) = 0.375.

Any contingent claim X1 can now be priced by

p0 =
1

1.05
EQ[X1].

Example 6.41 (Two–period binomial tree). Suppose the stock in the previous example continues

to evolve by up and down moves of factor u = 1.2 and d = 0.8. Starting at S0 = 100, the possible

paths are

S2 ∈ {100u2, 100ud, 100d2} = {144, 96, 64}.

From the one–period calculation, the risk–neutral probability of an up move is q = 0.625. Hence

under Q the path probabilities are

Q(uu) = q2, Q(ud) = q(1− q), Q(dd) = (1− q)2.

Thus Q is defined consistently on the two–period tree. The FTAP tells us that

S0

1
=

1

(1.05)2
EQ[S2],

and similarly for any claim paying X2 at time 2.

Example 6.42 (Credit–risk bond). A one–period bond costs p0 today and pays 100 at time 1 if
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there is no default, but pays only 50 if default occurs. Under physical probabilities,

P(no default) = 0.9, P(default) = 0.1.

If the riskfree rate is r = 0.05, then FTAP implies that there is a risk–neutral probability q such

that

p0 =
1

1.05

(
q · 100 + (1− q) · 50

)
.

For instance, if p0 = 85, then

85 =
1

1.05
(50 + 50q) =⇒ q =

85 · 1.05− 50

50
= 0.785.

Thus under the risk–neutral measure Q,

Q(no default) = 0.785, Q(default) = 0.215.

Even though the physical probability of default is 0.1, markets price the bond as if default had

probability 0.215. The difference reflects risk premia and is exactly what the FTAP encodes.

6.4.6 Numerical Exercises

Exercise 6.43 (Expected utility and risk attitudes). An agent has utility u(c) =
√
c. The agent

faces a lottery that pays $100 with probability 1/2 and $0 with probability 1/2.

1. Compute the expected payoff of the lottery.

2. Compute the expected utility of the lottery.

3. Compare the expected utility with the utility of the expected payoff. What does this show

about the agent’s risk profile?

Exercise 6.44 (Risk neutral vs. risk averse). Consider a lottery that pays $20 with probability

0.25 and $0 otherwise.

1. Compute the certainty equivalent if u(c) = c (risk neutral).

2. Compute the certainty equivalent if u(c) =
√
c (risk averse).

3. Compare the results and interpret.

Exercise 6.45 (Fundamental pricing equation). Suppose u(c) = log c, β = 0.95. An agent has

ct = 100 today and tomorrow’s consumption is random:

ct+1 =

110 with probability 0.5,

90 with probability 0.5.

An asset pays xt+1 = 10 in both states.
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1. Compute the stochastic discount factor mt+1 in each state.

2. Use the fundamental pricing equation to compute the asset’s price pt.

Exercise 6.46 (Equivalent measure). Continue with the previous data.

1. Construct the equivalent measure Q by

Q(ω) =
mt+1(ω)

E[mt+1]
P(ω).

2. Verify that Q is a probability measure.

3. Recompute the asset price as pt =
1

1+r E
Q[xt+1].

Exercise 6.47 (Two–state stock pricing). Suppose St = 100. At t+1, the stock is either St+1 = 120

or St+1 = 80. The riskfree gross return is R = 1.05.

1. Determine the risk–neutral probabilities q = Q(St+1 = 120) and 1− q.

2. Verify that the stock price satisfies

St =
1

R
EQ[St+1].

3. Suppose the stock also pays a dividend dt+1 = 5 in each state. Compute its price using

St =
1

R
EQ[St+1 + dt+1].
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