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Abstract. We study a two-party spatial competition model that ex-
tends the Hotelling-Downs framework by allowing voter abstention. Vot-
ers share a common voting window size and participate only if at least
one party lies within that window. Parties choose policy positions to
maximize their vote-share margin.

We show that if a pure-strategy Nash equilibrium exists, both parties
must choose the same policy position that generalizes the median voter
principle. In the classical model, the median splits the total electorate
into two equal halves; here, the equilibrium position must split the par-
ticipating voters within a fixed voting window into two equal parts. We
then give necessary and sufficient conditions on the voter distribution for
the existence of pure-strategy Nash equilibria. We identify broad classes
of voter distributions under which pure-strategy equilibria exist.

Keywords: Spatial competition - Abstention - Median voter theorem -
Nash equilibrium

1 Introduction

In the Hotelling model of spatial competition [8], refined for elections by Downs
[4], voters have preferences over a one-dimensional policy space and always vote
for the closer candidate. Candidates choose policy positions to maximize the
chance of winning. With full turnout, maximizing absolute vote share and maxi-
mizing the vote share margin are equivalent objectives. Under these assumptions,
any deviation from the median voter’s position loses more voters on one side than
it gains on the other. As a result, in a two-party election both candidates locate
at the median of the voter distribution.

A central assumption behind the median positioning result is full voter
turnout, which is often unrealistic. In real elections, participation is not un-
conditional. Voting involves informational, administrative, and physical costs,
which can reduce participation [1,11]. In addition, voters may abstain when no
party lies sufficiently close to their ideal point [12].

Several recent papers model incomplete turnout by assuming that voters par-
ticipate only if at least one candidate lies within a limited attraction interval.
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Following Feldman et al.[6] and Shen and Wang[10], voters abstain when no
party is sufficiently close. In these models, voters who participate choose ran-
domly among parties within their attraction interval. Feldman et al.[6] study
participation-maximization and related objectives, typically under a uniform
voter distribution, while Shen and Wang[10] extend the analysis to general dis-
tributions and show that pure equilibria need not always exist under winner-
take-all objectives. Related work allows attraction intervals to be stochastic [3]
or imposes unit-demand constraints [7], while retaining absolute vote-share ob-
jectives. In contrast, we use the attraction interval only to determine participa-
tion: voters who participate vote for the nearest party within range. Since we
assume a continuous voter distribution, ties occur on a set of measure zero and
do not affect payoffs.

Empirical and theoretical work in political science and economics shows that
the size of a victory margin influences post-election outcomes and strategic be-
havior: candidates and parties interpret larger margins as a stronger mandate,
which can affect policy choices, bargaining power, and political legitimacy, and
models where “mandate” influences incentives have been studied in the litera-
ture [2,5]. Thus, we are interested in vote-share margin maximization.

Our model, presented in Section 2, considers voters who vote the nearest
party in a window and abstain otherwise. The parties maximise the vote share
margin. While pure equilibria are not guaranteed for all distributions under this
objective, we generalise the median voting result.

Our first result shows that if a pure-strategy Nash equilibrium exists, then
both candidates must locate at a conditional median of the voter distribution
(Theorem 1), extending the classical median voter principle to a limited at-
traction interval setting. We show that conditional medians always exist for
continuous voter distributions.

Existence of a conditional median, however, is not sufficient for equilibrium.
Whether a candidate can profitably deviate depends on how voter mass is dis-
tributed within and across attraction windows. We formalize this requirement
through a notion of window dominance, which captures both global and local
incentives to deviate. Our main characterisation result shows that a symmet-
ric pure-strategy Nash equilibrium exists if and only if a conditional median is
window-dominant (Theorem 2). This yields transparent sufficient conditions for
equilibrium existence in a broad class of voter distributions.

Section 2 presents the model. Section 3 derives the conditional median condi-
tion. Section 4 studies window dominance for standard classes of voter distribu-
tions. Section 5 characterizes symmetric pure-strategy Nash equilibria. Section 6
concludes. All the proofs are in the appendix.

2 Model Framework and Preliminaries

We consider a continuum of voters with ideological positions ¢ € [0,1], dis-
tributed according to a continuous cumulative distribution function F. Each
voter has a limited voting radius ¢ > 0 that presents a limited attraction win-
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dow for a party. More precisely: A voter at t votes only if at least one party lies
in [t — ¢, t+ ¢]; otherwise the voter abstains. Among admissible parties, the voter
votes for the closest one. If both parties are equidistant, the voter randomizes
uniformly.

Two parties, A and B, simultaneously choose ideological positions a, b € [0, 1].
Let T be a random variable with a continuous cumulative distribution function
F, representing the ideological position of a randomly sampled voter. Since ties
occur on a set of measure zero, the tie-breaking rule does not affect payoffs. For
any strategy profile (a, b), the expected fraction of the vote share gained by A is
defined as

Va(a,b) :=Pr(|T — a| < min{|T —b|,c}),

with Vg(a,b) defined symmetrically.
Parties maximize the vote share margin. Payoffs are given by

Py(a,b) = Vy(a,b) — Vg(a,b), Pg(a,b) = Vg(a,b) — Va(a,b).

The game is symmetric and zero-sum.

A game G(F,c) is fully specified by the voter distribution F' and the attrac-
tion radius ¢, which are common knowledge. A Nash equilibrium is a strategy
profile (a*,b*) such that no party can profitably deviate unilaterally.

Definition 1. A strategy profile (a*,b*) is a Pure Strategy Nash equilib-
rium (PSNE) if

Py(a*,b*) > Pa(a,b*) Va€[0,1], Pg(a*,b*) > Pg(a*,b) Vbe|[0,1].
Further, if a* = b*, we say that the PSNE is symmetric.

The following fact is well known in the literature on symmetric zero-sum
games and follows from [9].

Proposition 1. Consider a two-player symmetric zero-sum game.

1. If (z,y) is a pure-strategy Nash equilibrium, then (z,x) and (y,y) are also
pure-strategy Nash equilibria.

2. Conversely, if (x,x) and (y,y) are pure-strategy Nash equilibria, then (x,y)
and (y,x) are also pure-strategy Nash equilibria.

In particular, the set of pure-strateqy Nash equilibria is rectangular: it is the
Cartesian product of the sets of pure equilibrium strategies of the two players.

This proposition allows us to restrict attention to symmetric PSNEs. To analyze
such equilibria, we study the mass of voters captured within attraction windows.

Definition 2. Let I C [0,1] be an interval of length |I| > 0. The window mass
of I is
w(l):= F(supI) — F(inf I).
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The window mass density of I is

Fiz ¢ > 0. The c-window mass at x is defined as

w(z,c) = w([z —c,x + ().

3 Conditional Median Voter Theorem

We characterize pure strategy Nash equilibria of G(F, ¢). Since the game is sym-

metric and zero-sum, any Nash equilibrium yields zero payoff to both players.
To refine the necessary conditions for an equilibrium, we must consider how a

candidate’s position is constrained by the specific boundaries of their attraction.

Definition 3 (Conditional Median). Let F' be a cumulative distribution func-
tion on [0,1] and fix ¢ > 0. A point a € [0,1] is a c-conditional median of F
if:

F(a+c¢)— F(a) = F(a) — F(a—c¢) (1)

If a real number is a c-conditional median for some positive real c, it is called a
conditional median of the distribution F.

Let CM (F,c) and CM(F') denote the set of c-conditional medians and con-
ditional medians of the distribution F respectively.

We quickly explain why the definition is natural.

Proposition 2 (Conditional median interpretation). Let T' be a random
variable with cumulative distribution function F. Fiz ¢ > 0 and a € [0,1], and
define the conditional distribution

Folz)=Pr(T <z |Te€a—ca+d), x €la—ca+d.

Then a satisfies
Fla+c¢)— F(a)=F(a) — F(a—c¢)

if and only if a is a median of the conditional distribution F.

Figure 1 illustrates the conditional median graphically: the point a divides
the voter mass within the attraction window [a — ¢, a + ¢] into two equal parts.

Theorem 1. Let F be a continuous cumulative distribution function on [0,1].
If (a*,b*) is a pure strategy Nash Equilibrium of the game G(F,c), then a* and
b* must be conditional medians of distribution F.

Introducing voter abstention replaces the classical median voting principle
with a conditional median criterion: parties must locate at positions that balance
voter mass within their attraction windows. For sufficiently large values of ¢, this
condition coincides with the median of the full distribution.
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Fig. 1. The conditional median a splits the voter mass within the window [a — ¢, a+¢]
into two equal parts.

Corollary 1 (Reduction to the median voter).
Let F be a continuous cumulative distribution function on [0, 1] with median
m, i.e. F(m) = % For ¢ > max{m, 1 —m}, the point m satisfies the conditional
median equation.
Fla+c¢)— F(a) = F(a) — F(a—c¢)

Next we address the question of whether conditional medians exist for ev-
ery distribution. The following lemma establishes that the conditional median
equation always admits a solution.

Proposition 3. Let F' be a continuous cumulative density function. Then there
exists a c-conditional median for F, i.e. CM(F,c) # ¢

4 Window dominance of a distribution

Now we isolate a property of a distribution that helps us characterise symmetric
pure equilibria in Section 5.

Definition 4 (Window Dominance). Fiz ¢ > 0 and let F be a distribution
on [0,1]. Let a € [0,1] and define I* = [a — ¢, a + ¢].

1. (Global c-dominance at a) We say that F is globally c-dominant at a if
for every interval J C [0, 1] of length 2¢ with JNI* = &,

p(I*) = p(J).

2. (Local c-dominance at a) We say that F is locally c-dominant at a if for
every 0 € (0,2c|,

pla+c,a+c+6)) < p(la,a+ ),

and
plla—c—6,a—c) < p(la—$,a)).
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We say that F is c-window dominant at a if it is both globally and locally c-
dominant at a.

We now identify two broad classes of functions that are window dominant.

Proposition 4. Let f be a continuous density on [0,1] that is symmetric and
unimodal with mode a € (0,1). Fiz ¢ > 0 such that [a — ¢,a+ ¢c| C [0,1]. Then
F is c-window dominant at a.

Proposition 5. Fiz ¢ > 0 and let f be a continuous density on [0, 1].

1. If f is non-decreasing, then F is c-window dominant at a point a € [1—c,1].
2. If f is non-increasing, then F is c-window dominant at a point a € [0, c].

5 Characterisation of pure symmetric equilibria

In this section we state the characterisation theorem: window dominance at the
conditional median is the condition that characterises symmetric pure-strategy
equilibria.

Theorem 2 (Characterisation of PSNE). Fiz ¢ > 0 and a continuous dis-
tribution F. A symmetric pure-strategy Nash equilibrium exists for G(F,c) at
(a,a) if and only if a is a conditional median which is window-dominant.

We quickly explain the intuition behind the proof. When both players locate
at the same conditional median, each player’s vote share is obtained from exactly
one side of that point. Consider a unilateral deviation by one player. If the
deviation places the new attraction window disjoint from the original one, the
payoff comparison reduces to a comparison of window masses; this corresponds
to global window dominance.

If instead the attraction windows overlap, the situation is as illustrated in
Figure 2. The deviating player gains a voter mass G at the boundary of the
attraction window, but loses a voter mass L near the conditional median. Because
voters near the median are split at the indifference point, the loss L enters the
vote-share margin twice, while the gain G enters only once. Thus a deviation is
unprofitable if and only if G < 2L, which is exactly the local window dominance
condition at the conditional median.

Even for unimodal voter distributions, the symmetric middle position need
not be stable under bounded tolerance. While high voter density near the center
attracts both candidates, locating too close forces them to split this mass. A
small unilateral deviation can allow one candidate to capture most of the central
voters while losing only a small amount of peripheral support. This creates a local
incentive to deviate that can rule out pure strategy Nash equilibria.
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Fig. 2. Local deviation at the conditional median a. The blue window represents the
original attraction interval [a,a + ¢], while the green window represents the shifted
interval [a+ £, a+ 6 +c]. Their overlap is shaded naturally. Mass L lost near the center
is counted twice in the vote-share margin, whereas mass G gained at the boundary is
counted once.

6 Conclusion

We study two-party spatial competition when voters participate only if at least
one party lies within a fixed distance of their ideal point, and parties maximize
the vote-share margin. This setting modifies the classical median voter result.
If a pure-strategy Nash equilibrium exists, both parties must locate at a condi-
tional median of the voter distribution. Such points always exist for continuous
distributions, but equilibrium existence is no longer guaranteed for general voter
distributions. This contrasts with the Hotelling—-Downs model, where existence
and uniqueness are automatic.

We show that equilibrium existence depends on how voter mass is distributed
within attraction windows. Even at a conditional median, local deviations may
be profitable when voter density is uneven across the window. We formalize this
mechanism through window dominance and use it to characterize symmetric
pure-strategy equilibria.

Several questions remain open. First, the structure of the set of conditional
medians as the attraction interval length varies is not yet well understood. Sec-
ond, while symmetric unimodality and monotonicity provide sufficient conditions
for window dominance, it remains an open question how far these conditions can
be relaxed. Identifying alternative shape restrictions on the voter distribution
that ensure window dominance is a natural direction for future work. Finally,
the model raises empirical questions about candidate positioning when voter par-
ticipation depends on ideological distance. Exploring these implications would
require combining the theory with independent evidence on voter abstention and
tolerance, which we leave for future work.
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Appendix
A Proof of Proposition 2
Proof. Fix ¢ > 0 and a € [0, 1]. Let
Folz)=Pr(T <z |Te€a—ca+d), z€la—ca+d.

For any = € [a — ¢,a + ¢], by the definition of conditional probability,

Pr(T <z, TE€a—c,a+])
Pr(T € [a—c,a+d])

_ F(z)— F(a—c¢)
Fla+c¢)—F(a—c)

F,(z) =

The point a is a median of the conditional distribution F, if and only if

F.(a) = %

Substituting the expression above yields

F(a)— F(a—c¢) _
Fla+c¢)—F(a—c)

9

N[

which is equivalent to
F(a)—F(a—c)=%(F(a+¢c)— F(a—c)).
Rearranging gives
Fla+c¢)— F(a) = F(a) — F(a—c¢).
Thus a satisfies the conditional median equation if and only if a is a median

of the conditional distribution F,.

B Proof of Theorem 1

Let (a*,b*) be a pure strategy Nash equilibrium of G(F,c). Since the game is
symmetric and zero-sum, equilibrium payoffs satisfy

Py(a*,b%) = Pg(a®,b*) = 0.

Suppose, toward a contradiction, that a* is not a conditional median. With-
out loss of generality, assume

F(a*+¢)—F(a*) > F(a") — F(a" —0). (2)
Consider a deviation by player B to

b=a"+e¢e,
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where € > 0 is sufficiently small. The indifference point between a* and b is

a*+b . €
m(e) = 5 =0 +§.

For e small enough, the attraction windows overlap, and voters in
[m(e), a* 4+ &+
vote for player B, while voters in
[a" — ¢, m(e)]

vote for player A.
Therefore the vote shares are

Vp(a*,b) = F(a* +e+c)— F(a" +
Va(a*,b) = F(a* +5) — F(a* — ).

),

o

The payoff difference for player B is thus
AV (e) = Vg(a*,b) — Va(a™,b)

= [F(a*+e+c)—F(a*+¢/2)] — [F(a* +¢/2) — F(a* —¢)].
By continuity of F',

lim AV (e) = [F(a* +¢) — F(a*)] — [F(a*) — F(a* — ¢)].

e—0t

(3)

By assumption (2), this limit is strictly positive. Hence there exists 6 > 0

such that
AV (e) >0 for all € € (0,9).

Thus player B has a strictly profitable unilateral deviation from (a*,b*),
contradicting the assumption that (a*,b*) is a Nash equilibrium. An analogous
argument applies when the reverse inequality holds, using the deviation b =

a* — €. This completes the proof.

C Proof of Proposition 3
Fix ¢ > 0 and define, for = € [0, 1],
g(x) == F(min{l,z + c}) — 2F(z) + F (max{0,z — c}).

Since F' is continuous on [0, 1], the function g is continuous on [0, 1].
We evaluate g at the endpoints.

a

At z =0, we have max{0,0 — ¢} = 0 and min{1,0 + ¢} = min{e, 1}, hence

9(0) = F(min{c,1}) — F(0) > 0,
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since F' is nondecreasing.
At z = 1, we have min{1,1 + ¢} = 1 and max{0,1 — ¢} = max{0,1 — ¢},
hence

g(1) =F(1) —2F(1) + F(max{0,1 — ¢}) = F(max{0,1 — ¢}) — F(1) < 0.

Thus ¢(0) > 0 and g(1) < 0. By the Intermediate Value Theorem, there
exists some z € [0, 1] such that g(z) = 0, i.e.

Flx+c¢)— F(z)=F(x) — F(z — ¢),

with the understanding that F'(z+c¢) = F(1) when z+c¢ > 1 and F(z—c) = F(0)
when x — ¢ < 0.
Therefore a conditional median exists. O

D Proof of Theorem 2

Let (a*,b*) be a Nash equilibrium of G(F,c). Since the game is symmetric and
zero-sum, equilibrium payoffs satisfy

Py(a*,b*) = Pg(a*,b*) = 0.
From Theorem 1, ¢* and b* are conditional medians.
Suppose, toward a contradiction, that a* is not window dominant.

Failure of global dominance. If ¢* is not globally ¢-dominant, then for I* =
[a* — ¢,a* + ] there exists an interval J C [0, 1] of length 2¢ with JNI* = &
such that

p(J) > p(I7).

Let 2* be the midpoint of J. If player B deviates to «*, then
P(a*,2*) = [p(J) — p(I")] - 2¢ > 0,

contradicting the assumption that (a*,b*) is a Nash equilibrium.

Failure of local dominance. Alternatively, suppose a* is not locally c-dominant.
Then there exists 6 € (0, 2¢] such that either

p([a* +e¢,a" +c+0]) > p([a*,a” + %]),

or
[

p(la* —c—d,a" —c]) > p([a* — 5,a"]).
Without loss of generality, assume the first inequality holds.
Consider a deviation by player B to b = a* + §. The indifference point is

a’+(a"+d) a4+ 8

m = 5 3

[ V)
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Player B’s payoff is therefore

Pg(a*,a*+8) = [F(a* +c+6) — F(a* +3)] — [F(a* + ) — F(a* — ¢)].

Since a* is a conditional median,
F(a*)— F(a* —c¢) = F(a* +¢) — F(a").
Adding and subtracting these terms yields
Pg(a*,a* +0) = —2[F(a* + §) — F(a")] + [F(a* + ¢+ ) — F(a* +¢)]
= [p(la* + ¢,a* +c+3]) — p(la*,a* + §])] - 6 > 0,

contradicting equilibrium. An analogous argument applies when the second in-
equality holds, using the deviation b = a* — 6. This establishes the necessity of
window dominance.

Sufficiency. Now suppose a* is a conditional median and is c-window dominant.
We show that (a*,a*) is a Nash equilibrium.

At (a*,a*),

Py(a*,a*) = Pg(a*,a™) = 0.
By symmetry, it suffices to show that for all = € [0, 1],
Py(z,a") <0.
Let I* = [a* —c,a* + ] and J =[xz —c,z +¢]. If JNI* = &, then
Py(z,a*) = [p(J) = p(I*)] -2¢ <0

by global c-dominance.
If TNI* # @, then = a* £ § for some ¢ € (0, 2¢]. Consider z = a* +J. The
indifference point is m = a* + g, and

Py(z,a*) = [F(a* +c+06) — F(a* + 5)] — [F(a* + §) — F(a* - ¢)].
Using the conditional median identity and rearranging as before,
Pa(z,a*) = [p(la* +¢,a* +c+6]) — p([a*,a* + §])] -6 <0
by local c-dominance. The case x = a™ — § is symmetric.
Thus P4(x,a*) <0 for all z € [0,1], and (a*,a*) is a Nash equilibrium. O
E Proof of Proposition 4

A unimodal symmetric distribution is a distribution with a density f such that
f(x) is non-decreasing in [0, a], where a is the mode,

y>r= f(y) > f(z), xy€(0,d
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f(z) is non-increasing in [a, 1],
y>z=fly) <flz), =zyeclal]
and f is symmetric around the mode a.
fla—z) = fla+2x) x € [0,min(a,1 — a))

We illustrate global c-window dominance at a. For I* = [a — ¢, a + ¢], consider
an interval J of length 2¢ centred around z such that * < @ and JNI* = &.
Then, the following inequalities hold

p(J) < p([z,z +¢]) < p(la = ¢, a]) = p(la = ¢,a + ) = p(I7)

An analogous argument can be used for x > a using a comparison with p([a,a +

).

‘We now show local c-window dominance at a.

é 6
pllateatetd]) <p(lateatet]) <plla,at )
and 5 5
plla—c—da—d) < plla—c—3,a~d) < plla— 3,a)
This completes the proof. a

F Proof of Proposition 5

A non-decreasing density f is characterised by the following condition:

y>z= f(y) > flx) x,yel0,1]

First, we show that there exists a conditional median a € [1 — ¢, 1], then show
that a is c-window dominant.
Recall Proposition 2. Define the function G(z) on [0,1] as

G(x) = [F(z +¢) = F(2)] = [F(z) - F(z - ¢]

Since F' is a continuous function on [0, 1], G is continuous on [0, 1].
We evaluate Gat x =1 —candat z =1. At x =1 — ¢,

G(l—c)=[F(1) = F(1—-¢)] = [F(1—c)— F(1—-2¢)] >0

This is due to the non-decreasing nature of the density f. Now, at x =1,

G1)=[F(1+¢) - FQ)] - [F1) - F1-¢)]

Fl—c¢)—1<0
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Thus, G(1 —¢) > 0 and G(1) < 0. By the Intermediate Value Theorem, there
exists a € [1 — ¢, 1] such that a is a conditional median.

We go on to show that a is c-window dominant.

First, we illustrate global c-window dominance at a.

For I* = [a — ¢,a + ¢], consider an interval J of length 2¢ centred at z € [0, 1]
such that J N I* = @. Then, the following inequalities hold:

p(J) < plz,x +¢]) < p(la = ¢,a]) = p(la = ¢, 1]) = p(I")

These inequalities hold since J N I* = @ only for £ < a. We now show local
c-window dominance at a.

pio-c-sa-ayzp(foe- ) <o(fa b))

0=p(lateatctd) Sp([wﬁﬂ)

and

Thus, completing the proof for non-decreasing densities. We can use analogous
arguments for non-increasing densities by showing the existence of a conditional
median @ on [0, ¢] and then showing c-window dominance of a.



